Write whether $\dfrac{{2\sqrt {45} + 3\sqrt {20} }}{{2\sqrt 5 }}$ on simplification gives as rational or an irrational.
Answer
Verified
482.7k+ views
Hint:Here we need to factorize the root numbers which were in the given mathematical expression.To find a factorization of the root number we use LCM method.
On some simplification, we get the solution and find whether it is rational or irrational.
According to the definition of rational number, A number is said to be rational number if it is in the form of\[\;\dfrac{p}{q},{\text{ q}} \ne 0\] and \[p,{\text{ q}} \in I\] where I is the set of integers)
Complete step-by-step answer:
It is given that the expression, $\dfrac{{2\sqrt {45} + 3\sqrt {20} }}{{2\sqrt 5 }}$
Take an expression as equation (1)
Now we can write, $\dfrac{{2\sqrt {45} + 3\sqrt {20} }}{{2\sqrt 5 }}..... \to (1)$
Then, we find factors of the root value \[45,20\] by using LCM (Least Common Multiple) Method.
On finding factors,
\[45 = 3 \times 3 \times 5\]
Similarly, we can find factors for
\[\;20 = 2 \times 2 \times 5\]
Substituting the value of \[45\] in the root can be expressed as
We are getting,
$\therefore \sqrt {45} = \sqrt {3 \times 3 \times 5} = 3\sqrt 5 $
Similarly, we do this process for \[20\]
Substituting the value of \[20\] in the root can be expressed as
We are getting,
$\therefore \sqrt {20} = \sqrt {2 \times 2 \times 5} = 2\sqrt 5 $
Substituting the values of $\sqrt {45} $ and $\sqrt {20} $ in the equation $(1)$
We will get,$\dfrac{{2 \times 3\sqrt 5 + 3 \times 2\sqrt 5 }}{{2\sqrt 5 }}$
Now take common factor $2\sqrt 5 $ in the numerator part, we get
$ = \dfrac{{2\sqrt 5 \left( {3 + 3} \right)}}{{2\sqrt 5 }}$
On some simplification we will get the answer
=6, which is the rational number.
Hence, the given expression is a rational number on simplification.
Note:
Definition of irrational number:A number is said to be rational number if it is in the form of \[\;\dfrac{p}{q},{\text{ q}} \ne 0\] and \[p,{\text{ q}} \in I\] where I is the set of integers).In this question, it is in factor formation, so we can say this expression is not irrational on simplification.
On some simplification, we get the solution and find whether it is rational or irrational.
According to the definition of rational number, A number is said to be rational number if it is in the form of\[\;\dfrac{p}{q},{\text{ q}} \ne 0\] and \[p,{\text{ q}} \in I\] where I is the set of integers)
Complete step-by-step answer:
It is given that the expression, $\dfrac{{2\sqrt {45} + 3\sqrt {20} }}{{2\sqrt 5 }}$
Take an expression as equation (1)
Now we can write, $\dfrac{{2\sqrt {45} + 3\sqrt {20} }}{{2\sqrt 5 }}..... \to (1)$
Then, we find factors of the root value \[45,20\] by using LCM (Least Common Multiple) Method.
On finding factors,
\[45 = 3 \times 3 \times 5\]
Similarly, we can find factors for
\[\;20 = 2 \times 2 \times 5\]
Substituting the value of \[45\] in the root can be expressed as
We are getting,
$\therefore \sqrt {45} = \sqrt {3 \times 3 \times 5} = 3\sqrt 5 $
Similarly, we do this process for \[20\]
Substituting the value of \[20\] in the root can be expressed as
We are getting,
$\therefore \sqrt {20} = \sqrt {2 \times 2 \times 5} = 2\sqrt 5 $
Substituting the values of $\sqrt {45} $ and $\sqrt {20} $ in the equation $(1)$
We will get,$\dfrac{{2 \times 3\sqrt 5 + 3 \times 2\sqrt 5 }}{{2\sqrt 5 }}$
Now take common factor $2\sqrt 5 $ in the numerator part, we get
$ = \dfrac{{2\sqrt 5 \left( {3 + 3} \right)}}{{2\sqrt 5 }}$
On some simplification we will get the answer
=6, which is the rational number.
Hence, the given expression is a rational number on simplification.
Note:
Definition of irrational number:A number is said to be rational number if it is in the form of \[\;\dfrac{p}{q},{\text{ q}} \ne 0\] and \[p,{\text{ q}} \in I\] where I is the set of integers).In this question, it is in factor formation, so we can say this expression is not irrational on simplification.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE