Write whether every positive integer can be of the form $4q + 2$ where \[q\] an integer is. Justify your answer.
Answer
Verified
482.4k+ views
Hint: The form $4q + 2$ can be written by $4q + 2 = 2(2q + 1)$.Try to substitute \[q\] for different values of integers. Integer is a set of numbers in the form $\{ - \infty ,...... - 2, - 1,0,1,2,3,4,5,.....\infty \} $ it contains both positive and negative numbers and also 0.Here is the set of positive numbers that are $\{ 1,2,3,4,5,.....\infty \} $
In the above set of positive numbers, if we can substitute \[q\] for different integers, then we get a positive integer, and also we say that the form $4q + 2$ be a positive integer.
Complete step-by-step answer:
It is given that, \[q\] is an integer.
Let us consider \[y = 4q + 2\]
We can split into \[y = 2(2q + 1)\]
Substitute the value of $q = \{ - \infty ,...... - 2, - 1,0,1,2,3,4,5,.....\infty \} $ in \[y\], we get
Let us substitute the values randomly,
Consider \[q = - 1\] in \[y\], then
\[y = 2(2( - 1) + 1)\]
\[y = 2( - 2 + 1)\]
\[y = 2( - 1)\]
\[y = - 2\]
Also we consider \[q = 0\] in \[y\], then
\[y = 2(2(0) + 1)\]
\[y = 2(0 + 1)\]
\[y = 2(1)\]
\[y = 2\]
Now we consider \[q = 1\] in \[y\], then
\[y = 2(2(1) + 1)\]
\[y = 2(2 + 1)\]
\[y = 2(3)\]
\[y = 6\]
Also we consider, \[q = 2\] in \[y\], then
\[y = 2(2(2) + 1)\]
\[y = 2(4 + 1)\]
\[y = 2(5)\]
\[y = 10\]
Hence we get the value of
\[y = - 2,y = 2,y = 6,y = 10\]
As we observe the above substitution for \[q\] and result of \[y\], it is given that only even numbers.
If we take \[q\] is negative values, it gives result as \[y\] is negative integer,
If we take \[q\] is zero, it gives result as \[y\] is positive even integer,
If we take \[q\] as positive values, it gives a result as \[y\] is positive even integer.
Hence, we can justify our answer, this form does not give positive integer for every integer because positive integer has positive odd integer, positive even integer.
This form gives only positive even integers but our discussion is about every positive integer has the form $4q + 2$.
Hence we justified our answer.
Note: We are discussing the form positive integers, actually such a form exists with the condition.
E.g. If \[\{ n\} _{n = 1}^\infty \] for all positive integers of \[n\], then the sequence gives a positive integer.
If \[\{ n\} _{n = - 1}^{ - \infty }\] for all the negative integers of \[n\], then the sequence gives a negative integer also for zero it is zero integer.
It is followed by only certain conditions.
The form \[4q + 2\] for any values of integer, odd integer is missing that odd number is missing. So the form does not satisfy the condition of positive integer.
In the above set of positive numbers, if we can substitute \[q\] for different integers, then we get a positive integer, and also we say that the form $4q + 2$ be a positive integer.
Complete step-by-step answer:
It is given that, \[q\] is an integer.
Let us consider \[y = 4q + 2\]
We can split into \[y = 2(2q + 1)\]
Substitute the value of $q = \{ - \infty ,...... - 2, - 1,0,1,2,3,4,5,.....\infty \} $ in \[y\], we get
Let us substitute the values randomly,
Consider \[q = - 1\] in \[y\], then
\[y = 2(2( - 1) + 1)\]
\[y = 2( - 2 + 1)\]
\[y = 2( - 1)\]
\[y = - 2\]
Also we consider \[q = 0\] in \[y\], then
\[y = 2(2(0) + 1)\]
\[y = 2(0 + 1)\]
\[y = 2(1)\]
\[y = 2\]
Now we consider \[q = 1\] in \[y\], then
\[y = 2(2(1) + 1)\]
\[y = 2(2 + 1)\]
\[y = 2(3)\]
\[y = 6\]
Also we consider, \[q = 2\] in \[y\], then
\[y = 2(2(2) + 1)\]
\[y = 2(4 + 1)\]
\[y = 2(5)\]
\[y = 10\]
Hence we get the value of
\[y = - 2,y = 2,y = 6,y = 10\]
As we observe the above substitution for \[q\] and result of \[y\], it is given that only even numbers.
If we take \[q\] is negative values, it gives result as \[y\] is negative integer,
If we take \[q\] is zero, it gives result as \[y\] is positive even integer,
If we take \[q\] as positive values, it gives a result as \[y\] is positive even integer.
Hence, we can justify our answer, this form does not give positive integer for every integer because positive integer has positive odd integer, positive even integer.
This form gives only positive even integers but our discussion is about every positive integer has the form $4q + 2$.
Hence we justified our answer.
Note: We are discussing the form positive integers, actually such a form exists with the condition.
E.g. If \[\{ n\} _{n = 1}^\infty \] for all positive integers of \[n\], then the sequence gives a positive integer.
If \[\{ n\} _{n = - 1}^{ - \infty }\] for all the negative integers of \[n\], then the sequence gives a negative integer also for zero it is zero integer.
It is followed by only certain conditions.
The form \[4q + 2\] for any values of integer, odd integer is missing that odd number is missing. So the form does not satisfy the condition of positive integer.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE