How do you write $y + 9 = - 3(x - 2)$ in standard form?
Answer
Verified
442.8k+ views
Hint: Take out all the like terms to one side and all the alike terms to the other side. Take out all the common terms. Then substitute the value of the expression in the other equation. Reduce the terms on the both sides until they cannot be reduced any further if possible. Then finally evaluate the value of the unknown variable. Then convert the equation to the standard form which is given by $x + y = c$.
Complete step-by-step solution:
First we will start off by taking all the like terms to one side in the first equation.
$
\Rightarrow y + 9 = - 3(x - 2) \\
\Rightarrow y + 3(x - 2) = - 9 \\
$
Now we will open the brackets and reduce the terms on both the sides.
$
\Rightarrow y + 3(x - 2) = - 9 \\
\Rightarrow y + 3x - 6 = - 9 \\
\Rightarrow y + 3x = - 9 + 6 \\
\Rightarrow y + 3x = - 3 \\
$
Now we will convert the equation to its standard form.
$
\Rightarrow y + 3x = - 3 \\
\Rightarrow x + \dfrac{y}{3} = - 1 \\
$
Hence, the equation $y + 9 = - 3(x - 2)$ in standard form is given by $x + \dfrac{y}{3} = - 1$.
Additional Information: To cross multiply terms, you will multiply the numerator in the first fraction times the denominator in the second fraction, then you write that number down. Then you multiply the numerator of the second fraction times the number in the denominator of your first fraction, and then you write that number down. By Cross multiplication of fractions, we get to know if two fractions are equal or which one is greater. This is especially useful when you are working with larger fractions that you are not sure how to reduce. Cross multiplication also helps us to solve for unknown variables in fractions.
Note: While taking terms from one side to another, make sure you are changing their respective signs as well. While opening any brackets, always multiply the signs present outside the brackets along with the terms. Reduce the terms using the factorisation method.
Complete step-by-step solution:
First we will start off by taking all the like terms to one side in the first equation.
$
\Rightarrow y + 9 = - 3(x - 2) \\
\Rightarrow y + 3(x - 2) = - 9 \\
$
Now we will open the brackets and reduce the terms on both the sides.
$
\Rightarrow y + 3(x - 2) = - 9 \\
\Rightarrow y + 3x - 6 = - 9 \\
\Rightarrow y + 3x = - 9 + 6 \\
\Rightarrow y + 3x = - 3 \\
$
Now we will convert the equation to its standard form.
$
\Rightarrow y + 3x = - 3 \\
\Rightarrow x + \dfrac{y}{3} = - 1 \\
$
Hence, the equation $y + 9 = - 3(x - 2)$ in standard form is given by $x + \dfrac{y}{3} = - 1$.
Additional Information: To cross multiply terms, you will multiply the numerator in the first fraction times the denominator in the second fraction, then you write that number down. Then you multiply the numerator of the second fraction times the number in the denominator of your first fraction, and then you write that number down. By Cross multiplication of fractions, we get to know if two fractions are equal or which one is greater. This is especially useful when you are working with larger fractions that you are not sure how to reduce. Cross multiplication also helps us to solve for unknown variables in fractions.
Note: While taking terms from one side to another, make sure you are changing their respective signs as well. While opening any brackets, always multiply the signs present outside the brackets along with the terms. Reduce the terms using the factorisation method.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE