
$x=p\sec \theta $ and $y=q\tan \theta $ then
A.${{x}^{2}}-{{y}^{2}}={{p}^{2}}{{q}^{2}}$
B.${{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}=pq$
C.${{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}={{p}^{2}}{{q}^{2}}$
D.${{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}=\dfrac{1}{{{p}^{2}}{{q}^{2}}}$
Answer
521.4k+ views
Hint: Out of the given options the right-hand side of the equation is always independent of $\theta $. So, we have to perform some calculations to make left-hand side equations independent of $\theta $ too. Thus, we need to make equations based on $\theta $ and solve it accordingly to remove $\theta $.
Complete step-by-step answer:
Here, we have $x=p\sec \theta $ and $y=q\tan \theta $
Considering each option’s nature, we can see that the right-hand side of the equations are independent of $\theta $. So, we have to form equations based on $\theta $ to eliminate it from these equations.
Now, from the given equations, for $x=p\sec \theta $, we get
$\Rightarrow x=p\sec \theta $
On cross-multiplication, we get
$\Rightarrow \sec \theta =\dfrac{x}{p}...\text{ }\left( 1 \right)$
Similarly, from $y=q\tan \theta $, we have
\[\begin{align}
& \Rightarrow y=q\tan \theta \\
& \Rightarrow \tan \theta =\dfrac{y}{q}...\text{ }\left( 2 \right) \\
\end{align}\]
Since, we need to make the equations independent of $\theta $, we can use trigonometric identities, i.e.,
${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $
And, substituting values of $\tan \theta $ and $\sec \theta $ from equation (1) and (2), we get
$\begin{align}
& \Rightarrow {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{x}{p} \right)}^{2}}=1+{{\left( \dfrac{y}{q} \right)}^{2}} \\
\end{align}$
By transposing the variables, we get
\[\begin{align}
& \Rightarrow {{\left( \dfrac{x}{p} \right)}^{2}}=1+{{\left( \dfrac{y}{q} \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{x}{p} \right)}^{2}}-{{\left( \dfrac{y}{q} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{{{x}^{2}}}{{{p}^{2}}}-\dfrac{{{y}^{2}}}{{{q}^{2}}}=1 \\
\end{align}\]
Taking LCM on LHS of the equation, we get
\[\begin{align}
& \Rightarrow \dfrac{{{x}^{2}}}{{{p}^{2}}}-\dfrac{{{y}^{2}}}{{{q}^{2}}}=1 \\
& \Rightarrow \dfrac{{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}}{{{p}^{2}}{{q}^{2}}}=1 \\
\end{align}\]
On cross-multiplication, we get
\[\begin{align}
& \Rightarrow \dfrac{{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}}{{{p}^{2}}{{q}^{2}}}=1 \\
& \Rightarrow {{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}=1\left( {{p}^{2}}{{q}^{2}} \right) \\
& \Rightarrow {{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}={{p}^{2}}{{q}^{2}} \\
\end{align}\]
Hence, on solving the given equations, we get \[{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}={{p}^{2}}{{q}^{2}}\], i.e., option [C] is correct.
Note: The easiest way to solve this kind of problem is by substituting the values of $x$ and $y$ on LHS of every option available and checking it with the values of RHS of that particular option. This method is very useful if the given equations of $x$ and $y$ are very complex.
Complete step-by-step answer:
Here, we have $x=p\sec \theta $ and $y=q\tan \theta $
Considering each option’s nature, we can see that the right-hand side of the equations are independent of $\theta $. So, we have to form equations based on $\theta $ to eliminate it from these equations.
Now, from the given equations, for $x=p\sec \theta $, we get
$\Rightarrow x=p\sec \theta $
On cross-multiplication, we get
$\Rightarrow \sec \theta =\dfrac{x}{p}...\text{ }\left( 1 \right)$
Similarly, from $y=q\tan \theta $, we have
\[\begin{align}
& \Rightarrow y=q\tan \theta \\
& \Rightarrow \tan \theta =\dfrac{y}{q}...\text{ }\left( 2 \right) \\
\end{align}\]
Since, we need to make the equations independent of $\theta $, we can use trigonometric identities, i.e.,
${{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta $
And, substituting values of $\tan \theta $ and $\sec \theta $ from equation (1) and (2), we get
$\begin{align}
& \Rightarrow {{\sec }^{2}}\theta =1+{{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{x}{p} \right)}^{2}}=1+{{\left( \dfrac{y}{q} \right)}^{2}} \\
\end{align}$
By transposing the variables, we get
\[\begin{align}
& \Rightarrow {{\left( \dfrac{x}{p} \right)}^{2}}=1+{{\left( \dfrac{y}{q} \right)}^{2}} \\
& \Rightarrow {{\left( \dfrac{x}{p} \right)}^{2}}-{{\left( \dfrac{y}{q} \right)}^{2}}=1 \\
& \Rightarrow \dfrac{{{x}^{2}}}{{{p}^{2}}}-\dfrac{{{y}^{2}}}{{{q}^{2}}}=1 \\
\end{align}\]
Taking LCM on LHS of the equation, we get
\[\begin{align}
& \Rightarrow \dfrac{{{x}^{2}}}{{{p}^{2}}}-\dfrac{{{y}^{2}}}{{{q}^{2}}}=1 \\
& \Rightarrow \dfrac{{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}}{{{p}^{2}}{{q}^{2}}}=1 \\
\end{align}\]
On cross-multiplication, we get
\[\begin{align}
& \Rightarrow \dfrac{{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}}{{{p}^{2}}{{q}^{2}}}=1 \\
& \Rightarrow {{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}=1\left( {{p}^{2}}{{q}^{2}} \right) \\
& \Rightarrow {{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}={{p}^{2}}{{q}^{2}} \\
\end{align}\]
Hence, on solving the given equations, we get \[{{x}^{2}}{{q}^{2}}-{{y}^{2}}{{p}^{2}}={{p}^{2}}{{q}^{2}}\], i.e., option [C] is correct.
Note: The easiest way to solve this kind of problem is by substituting the values of $x$ and $y$ on LHS of every option available and checking it with the values of RHS of that particular option. This method is very useful if the given equations of $x$ and $y$ are very complex.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Question An example of homologous organs is a Our arm class 10 biology CBSE
