Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 11 Maths Important Questions - Chapter 3 Trigonometric Functions

ffImage
banner

Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions: FREE PDF Download

Looking for a reliable way to prepare Chapter 3: Trigonometric Functions in CBSE Class 11 Maths? Our carefully prepared set of important questions is the perfect resource to help you prepare effectively. This chapter is a key part of the Class 11 Maths syllabus, covering essential topics like trigonometric identities, functions, equations, and inverse trigonometric concepts. These important questions focus on exam-relevant problems, ensuring you gain a thorough understanding of all key concepts.


Download the Important Questions for Class 11 Maths FREE PDF now to access a wide range of questions that are designed to strengthen your problem-solving skills and boost your confidence for exams. With step-by-step solutions and a focus on commonly tested topics, this resource is an excellent tool for students aiming for high marks. Start practising today.

Courses
Competitive Exams after 12th Science

Access Important Questions for Class 11 Maths Chapter 3 - Trigonometric Functions

1 Mark Questions

1. Find the radian measure corresponding to  5 37 30  

Ans- 

Converting the given value to a pure degree form

 53730=537(3060) 

 53760=5(752) 

 53760=5(752(60)) 

 53760=(458) 

Degree to Radian Conversion

 (458)(π180)=π32rad 


2. Find degree measure corresponding to  (π16)c  

Ans- 

Converting the given value from radian to degree form

π16×180π=(454) 

Simplify degree form

(454)=1115 


3. Find the length of an arc of a circle of radius  5cm  subtending a central angle measuring  15  

Ans- 

The arc of a circle with a radius of  5cm  with a central angle of  15  should be of the length  5π12cm  using the formula  Arc=π×(θ) .


4. Find the value of  19π3  

Ans- 

We have  tan19π3 

 tan19π3=tan(6π3) 

                   =tan(6π+π3) 

                   =tan(3×2π+π3) 

                   =tan(π3) 

                   =3 


5. Find the value of  sin(1125)  

Ans- 

We have  sin(1125) 

 sin(1125360×360) 

 =sin((3+45360)×360) 

 =sin(45) 

 =12 


6. Find the value of  tan(15)  

Ans- 

We have  tan15 

 tan15=tan(6045) 

                 =tan60tan451+tan60×tan45 

                 =313+1 


7. If  sinA=35  and  π2<A<  find cosA  

Ans- 

The condition  π2<A  denotes that we need to take into account for the second quadrant, hence the cosine value will be negative

Therefore, 

 cosA=45 


8. If  tanA=aa+1  and  tanB=12a+1  then find the value of  A+B  

Ans- 

 tan(A+B)=tanA+tanB1tanAtanB 

                           =aa+1+12a+11aa+112a+1 

                          =2a2+2a+1(a+1)(2a+1)(a+1)(2a+1)a(a+1)(2a+1) 

                          =1 

Which can only be possible if  A+B=45 .


9. Express  sin12θ+sin4θ  as the product of sines and cosine

Ans-

Using the trigonometric difference formula, we get

 sin12θ+sin4θ=sin(8θ+4θ)+sin(8θ4θ)  

                                    =2sin8θcos4θ 


10. Express  2cos4xsin2x  as an algebraic sum of sines or cosine.

Ans- 

 2cos4xsin2x=sin(2x+4x)+sin(2x4x) 

                                 =sin6x+sin(2x) 

                                  =sin6xsin2x 


11. Write the range of  cosθ  

Ans- 

The cosine function is a periodic function with a domain of  R  and a range of  [1,1] .


12. What is domain of  secθ  

Ans- 

The secant function is the reciprocal of the cosine function, it has a domain of  R{(2n+1)π2;nZ}  because those are the points where the cosine function equates to  0 .


13. Find the principal solution of  cotx=3  

Ans- 

The principal solution of  cotx=3  is for the following input values  x=5π6,11π6 .


14. Write the general solution of  cosθ=0  

Ans- 

The general solution for the equation  cosθ=0  is  θ=(2n+1)π2,nZ .


15. If  sinx=53 and  0 < x <π2 find the value of cos2x  

Ans- 

We know that  cos2x=1sin2x 

 cos2x=12(53)2 

                =12×59 

                =19 


16. If  cosx=13  and  x  lies in quadrant  III , find the value of  sinx2  

Ans- 

We know that  cos2x=12sin2x 

 cos(2(x2))=12sin2(x2) 

 13=12sin2x2 

 2sin2x2=1+13 

 sin2x2=23 

 sinx2=±23 

 sinx2=23[2nd Quadrant] 


17. Convert into radian measures  4730  

Ans- 

Convert into pure degree form and then convert to radian

 4730=(47+3060) 

                   =(47+12) 

                   =(952×π180)rad 

                   =19π72rad 


18. Evaluate  tan75  

Ans- 

Use the trigonometric addition formula for the tangent function

 tan75=tan(45+30) 

                 =tan45+tan301tan45tan30 

                 =3+131 


19. Prove that  sin(40+θ)cos(10+θ)cos(40+θ)sin(10+θ)=12  

Ans-  

Let us take the left-hand side of the equation and make some manipulations.

We know,  sin(ab)=sinacosbcosasinb 

 L.H.S=sin(40+θ)cos(10+θ)cos(40+θ)sin(10+θ) 

              =sin[40+θ10θ]=sin30 

              =12 


20. Find the principal solution of the eq.  sinx=32  

Ans- 

The principal solution of  sinx=32  is the input values of  x=π3,2π3 


21. Prove that  cos(π4+x)+cos(π4x)=2cosx 

Ans- 

Let us start with the left-hand side and use the trigonometric differences formula for the cosine function

 L.H.S=cos(π4+x)+cos(π4x) 

               =2cosπ4cosx 

               =2(12)cosx 

               =2cosx 

               =R.H.S 


22. Convert into radian measures  3730  

Ans- 

Convert into pure degree form and then convert from degree to radian

 3730=(37+3060) 

                 =(752) 

                 =752×π180rad 

                 =5π24rad 


23. Prove

 Sin (n+1) x Sin (n+2) x + Cos (n+1) x. Cos (n+2) x = Cos x   

Ans- 

 L.H.S. = sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x 

                 =cos{(n+1)x(n+2)x} 

                 =cos(nx+xn2x) 

                 =cos(x) 

                 =cos(x) 


  1. Find the value of  Sin31π3  

Ans- 

We have  sin31π3 

 Sin31π3=Sin(10π+π3) 

                   =Sin(2π×5+π3)[Periodic Function] 

                   =Sinπ3 

                   =32 


  1. Find the principal solution of the eq.  tanx=13

Ans- 

The principal solution of the equation  tanx=13  will be the input values of  x=5π6,11π6 


  1. Convert into radian measures 5 37 30  

Ans- 

Converting the given value to a pure degree form

 53730=537(3060) 

 53760=5(752) 

 53760=5(752(60)) 

 53760=(458) 

Degree to Radian Conversion

 (458)(π180)=π32rad 


  1.  Prove  Cos70. Cos10+ Sin70. Sin10=12  

Ans- 

Starting with the left-hand side and using the trigonometric differences formula for the cosine function.

 L.H.S=cos(7010) 

               =cos60 

               =12 


  1.  Evaluate  2Sinπ12  

Ans- 

Use the trigonometric difference formula for the sine function and expand

 2sinπ12=2sin[π4π6] 

                   =2[sinπ4cosπ6cosπ4sinπ6] 

                   =2[12×3212×12] 

                    =312 


  1.  Find the solution of  Sinx=32  

Ans- 

We are required to find the general solution for the equation  sinx=32 

 Sinx=32 

 Sinx=Sin(π+π3) 

 Sinx=Sin4π3 

When

 Sinθ=Sinα 

 θ=nπ+(1)nα 

 x=nπ+(1)n4π3 


  1.  Prove that  Cos9Sin9Cos9+Sin9=tan36  

Ans- 

Let us start with the right-hand side and use the trigonometric differences formula for the tangent function.

 R.H.S=tan36 

                =tan(459) 

                =tan45tan91+tan45tan9 

                =1tan91+tan9 

                =cos9sin9cos9+sin9 

                =L.H.S. 


  1.  Find the value of  tan19π3  

Ans- 

We have  tan(19π3) 

 tan19π3=tan(6ππ3) 

                  =tan[3×2π+π3][Periodic Function] 

                  =tanπ3 

                  =3 


  1.  Prove  Cos4x=18Sin2x.Cos2x 

Ans- 

Starting with the left-hand side and using the trigonometric addition formula, cos2x=12sin2x 

We get,

 L.H.S=Cos4x 

               =12Sin22x 

               =12(Sin2x)2 

               =12(2Sinx.Cosx)2 

               =12(4Sin2x.Cos2x) 

               =18Sin2x.Cos2x 


  1.  Prove  Cos(π+x).Cos(x)Sin(πx).Cos(π2+x)=Cot2x  

Ans- 

Starting with the left-hand side and using the trigonometric periodic identities, we obtain the following

 L.H.S.=cos(π+x)cos(x)sin(πx)cos(π2+x) 

                 =cosxcosxsinxsinx 

                 =cot2x 

                 =R.H.S. 


  1.  Prove that  tan56=Cos11+Sin11Cos11Sin11  

Ans- 

Starting with the left-hand side and using the trigonometric addition formula for the tangent function, we obtain

 L.H.S.=tan56 

                 =tan(45+11) 

                 =tan45+tan111tan45tan11 

                 =1+tan111tan11 

                =cos11+sin11cos11sin11 

                =R.H.S. 


  1.  Prove that  Cos105+Cos15=Sin75Sin15 

Ans- 

Starting with the left-hand side and using the trigonometric difference formula for the cosine function, we obtain

 L.H.S.=Cos105+Cos15 

                 =Cos(90+15)+Cos(9075) 

                 =Sin15+Sin75 

                 =Sin75Sin15 

                 =R.H.S. 


  1.  Find the value of  Cos(1710) 

Ans- 

We have  cos(1710) . We also know  cos(x)=cosx 

 Cos(1710)=Cos(180090) 

                               =Cos[5×360+90] 

                               =Cosπ2 

                               =0 


  1.   A wheel makes  360  revolutions in  1  minute. Through how many radians does it turn in  1  second.

Ans- 

Given,

 Number of revolutions made in 60s=360 

 Number of revolutions made in 1s=36060 

 Angle moved in 6 revolutions=2π×6 

 =12π 


  1. Prove that  Sin26xSin24x=Sin2x.Sin10x 

Ans- 

Starting with the left-hand side and using the trigonometric addition formula for the sine function, we obtain

 L.H.S.=Sin26xSin24x 

                =sin(6x+4x)sin(6x4x) 

                =sin10xsin2x 

                =R.H.S. 


  1. Prove that  tan69+tan661tan69.tan66=1 

Ans- 

Starting with the left-hand side and using the trigonometric difference identity for the tangent function, we obtain

 L.H.S.=tan69+tan661tan69tan66 

                 =tan(69+66) 

                 =tan(135) 

                 =tan(90+45) 

                =1 

                =R.H.S. 


  1.  Prove that  $\dfrac{\operatorname{Sin}x}{1+\operatorname{Cos}x}=\tan 

\dfrac{x}{2} $  

Ans- 

Starting with the left-hand side and using the trigonometric addition identities for the sine and cosine function, we obtain

 L.H.S.=sinx1+cosx 

                 =2sinx2cosx22cos2x2 

                 =sinx2cosx2 

                 =tanx2 

                 =R.H.S. 


4 Marks Questions

Prove the following identities

1. The minute hand of a watch is  1.5cm  long. How far does its tip move in  40  minute? 

Ans- 

Analysing the given information, we have 

 r=1.5cm 

 Angle made in 60min=360 

 Angle made in 1min=6 

 Angle made in 40min=6×40=240 

Calculating the arc distance

              θ=lr 

 240×π180=l1.5 

      2×3.14=l 

              6.28=l 

                      l=6.28cm 


2. Show that  tan 3x. tan 2x. tan x = tan 3x  tan 2x  tan x  

Ans- 

Let us start with  tan3x  and we know  3x=2x+x 

 tan3x=tan(2x+x) 

 tan3x1=tan2x+tanx1tan2x.tanx 

 tan3x(1tan2x.tanx)=tan2x+tanx 

 tan3xtan3x.tan2x.tanx=tan2x+tanx 

 tan3x.tan2x.tanx=tan3xtan2xtanx 


3. Find the value of  tanπ8  

Ans- 

We know that

 tan2x=2tanx1tan2x 

Therefore, we have

    tan(2π8)=2tanπ81tan2π8 

 1=2tanπ81tan2π8 

Put  tanπ8=x 

 1=2x1x2 

 2x=1x2 

 x=1±21 

Since,  π8  lies in the first quadrant, the value must be positive, hence

tanπ8=21 


4. Prove that  Sin(x+y)Sin(xy)=tanx+tanytanxtany  

Ans- 

Starting with the left-hand side and using the trigonometric difference formula for the sine function, we get

 L.H.S.=Sin(x+y)Sin(xy) 

                =Sinx.Cosy+Cosx.SinySinx.CosyCosx.Siny 

Dividing numerator and denominator by  Cosx.Cosy 

           =tanx+tanytanxtany 

               =R.H.S. 


5. If in two circles, arcs of the same length subtend angles  60  and  75  at the center find the ratio of their radii. 

Ans- 

We know that the length of the arc and its subtended angle is related using the following formula

 θ=1r1 

Therefore, we have

 60×π18=1r1 

 r1=3lπ      ….. (1) 

 θ=1r2 

 75×π18=1r2 

 r2=12l5π     ….. (2) 

 (1)÷(2) 

 r1r2=3lπ12l5π 

 =31π×5π12l 

 =5:4 


6. Prove that  Cos6x=32Cos2x48Cos4x+18Cos2x1  

Ans. 

Starting with the left-hand side and using the trigonometric identities for the cosine function, we obtain

 L.H.S.=Cos6x 

                 =Cos2(3x)=2Cos23x1 

                 =Cos2(3x) 

                 =2(4cos3x3cosx)21 

                 =2[16Cos6x+9Cos2x24Cos4x]1 

                  =32Cos6x+18Cos2x48Cos4x1 

               =32Cos6x48Cos4x+18Cos2x1 

                  =R.H.S. 


7. Solve  Sin2xSin4x+Sin6x=0  

Ans- 

Starting with the left-hand side and using the trigonometric addition identity for the sine function, we obtain

 L.H.S.=Sin6x+Sin2xSin4x 

                 =2sin(6x+2x2)cos(6x2x2)sin4x 

                 =sin4x(2cos2x1) 

                 =0 

Now,

 sin4x=0 

      4x=nπ 

        x=nπ4 

Also,

 2cos2x1=0 

        cos2x=cosπ3 

             2x=2nπ±π3 

              x=nπ±π6 


8. In a circle of diameter  40cm , the length of a chord is  20cm . Find the length of the minor area of the chord. 

Ans- 

Given,


circle with diameter

 θ=lr 

 60×π180=l20 

 l=20π3cm/s 


9. Prove that  tan4x=4tanx(1tan2x)16tan2x+tan4x  

Ans- 

Starting with the left-hand side and using the trigonometric addition identities for the tangent function, we obtain

 L.H.S.=tan4x 

                 =2tan2x1tan22x 

                 =2.2tan2x1tan22x1(2tan2x1tan22x)2 

                =4tanx1tan2x(1tan2x)24tan2x(1tan2x)2 

                 =4tanx(1tan2x)×(1tan2x)1+tan4x2tan2x4tan2x 

                 =4tanx(1tan2x)16tan2x+tan4x 

                 =R.H.S. 


10. Prove that  (Cosx+Cosy)2+(SinxSiny)2=4Cos2(x+y2)  

Ans- 

Starting with the left-hand side and using the trigonometric addition identities for the cosine and sine function, we obtain

 L.H.S.=(Cosx+Cosy)2+(SinxSiny)2 

                =(2Cosx+y2.Cosxy2)2+(2Cos(x+y2).Sin(xy2))2 

                =4Cos2x+y2.Cos2(xy2)+4Cos2x+y2.Sin2xy2 

               =4Cos2(x+y2)[Cos2xy2+Sin2xy2] 

               =4Cos2(x+y2) 

               =R.H.S. 


11. If  Cotx=512,x  lies in second quadrant find the values of other five trigonometric functions 

Ans- 

Given

 Cotx=512 

Using some trigonometric identities, we obtain

 tanx=125 

 Sec2x=1+tan2x 

 Secx=±135 

Since  x  lies in the second quadrant, the cosine value will be negative

 Secx=135 

 Cosx=513 

 Sinx=tanx.Cosx 

             =125×(513) 

              =1213 

 Cscx=1312 


12. Prove that  Sin5x2Sin3x+SinxCos5xCosx=tanx  

Ans- 

Starting with the left-hand side and using the trigonometric difference identities for the sine function, we obtain

 L.H.S.=Sin5x+Sinx2Sin3xCos5xCosx 

                 =2Sin3x.Cos2x2Sin3x2Sin3x.Sin2x 

                 =2Sin3x(Cos2x1)2Sin3x.Sin2x 

                 =(1Cos2x)Sin2x 

                 =2Sin2x2Sinx.Cosx 

                 =SinxCosx 

                 =tanx 

                 =R.H.S. 


13. Prove that  Sinx+Sin3x+Sin5x+Sin7x=4Cosx.Cos2x.Sin4x  

Ans- 

Starting with the left-hand side and using the trigonometric addition identities for the sine function, we obtain

 L.H.S.=Sinx+Sin3x+Sin5x+Sin7x 

                 =Sinx+Sin7x+Sin3x+Sin5x 

                 =2Sin(x+7x2).Cos(x7x2)+2Sin(3x+5x2)Cos(3x5x2) 

                 =2Sin4x.Cos3x+2Sin4x.Cosx 

                 =2Sin4x[Cos3x+Cosx] 

                 =2Sin4x[2Cos(3x+x2).Cos(3xx2)] 

                 =2Sin4x[2Cos2x.Cosx] 

                 =4Cosx.Cos2x.Sin4x 

                 =R.H.S. 


14. Find the angle between the minute hand and hour hand of a clock when the time is  7.20  

Ans- 

We know that the angle made by minute hand in  15min=15×6=90 


Angle between minute hand and hour

We also know that the angle made by the hour hand in  1hr=30 

In  60  minute  =3060 

 =12 

 [ Angle Travelled by  hr hand in  12hr=360] 

In  20 minutes  =12×20 

                         =10 

Angle made  =90+10 

                       =100 


15. Show that  2+2+2Cos4θ=2Cosθ  

Ans- 

Starting with the left-hand side and using the trigonometric addition identity for the cosine function, we obtain

 L.H.S.=2+2+2Cos4θ 

                 =2+2(1+Cos4θ) 

                 =2+2.2Cos22θ 

                 =2+2Cos2θ 

                 =2(1+Cos2θ) 

                 =2.2Cos2θ 

                 =2Cosθ 

                 =R.H.S. 


16. Prove that  Cot4x(Sin5x+Sin3x)=Cotx(Sin5xSin3x)  

Ans- 

Starting with the left-hand side and using the trigonometric addition identity for the sine function, we obtain

 L.H.S.=Cot4x(Sin5x+Sin3x) 

                =Cos4xSin4x[2Sin5x+3x2.Cos5x3x2] 

                =Cos4xSin4x2Sin4x.Cosx 

                =2Cos4x.Cosx 

Then, we move on to the right-hand side and using the trigonometric addition identity for the sine function, we obtain

   R.H.S.=Cotx(Sin5xSin3x) 

                   =CosxSinx[2Cos5x+3x2.Sin5x3x2] 

                   =CosxSinx[2Cos4x.Sinx] 

                   =2Cos4x.Cosx 

Therefore, 

   L.H.S=R.H.S 


6 Marks Questions

1. Find the general solution of  sin2x+sin4x+sin6x=0 

Ans- 

We have that  sin2x+sin4x+sin6x=0 

 (sin2x+sin6x)+sin4x=0 

 (2sin(2x+6x2)cos(2x6x2))+sin4x=0 

 2sin4xcos2x+sin4x=0 

 sin4x(2cos2x+1)=0 

Now

 sin4x=0 

 x=nπ 

 2cos2x+1=0 

 x=nπ±π3 


2. Find the general solution of  cosθcos2θcos3θ=14  

Ans- 

We have that  cosθcos2θcos3θ=14 

 4cosθcos2θcos3θ=1 

Using the trigonometric addition identity for the cosine function, we obtain

 2(2cosθcos3θ)cos2θ1=0 

 2(cos4θ+cos2θ)cos2θ1=0 

 2(2cos22θ1+cos2θ)cos2θ1=0 

 (2cos22θ1)(2cos2θ+1)=0 

Now,

 2cos22θ1=0 

 cos4θ=0 

 4θ=(2n+1)π2 

 θ=(2n+1)π8 

Also,

 2cos2θ+1=0 

 cos2θ=12 

 θ=nπ±π3 


3. If  Sinα+Sinβ=a  and  Cosα+Cosβ=b  

Show that  Cos(α+β)=b2a2b2+a2  

Ans- 

Squaring both the equations and adding them together,

 b2+a2=(Cosα+Cosβ)2+(Sinα+Sinβ)2 

                 =Cos2α+Cos2β+2Cosα.Cosβ+Sin2α+Sin2β+2Sinα.Sinβ 

                 =1+1+2(Cosα.Cosβ+Sinα.Sinβ) 

            =2+2Cos(αβ)        (1) 

 b2a2=(Cosα+Cosβ)2(Sinα+Sinβ)2 

                 =(Cos2αSin2β)+(Cos2βSin2α)+2Cos(α+β) 

                 =Cos(α+β)Cos(αβ)+Cos(β+α)Cos(αβ)+2Cos(α+β) 

                 =2Cos(α+β).Cos(αβ)+2Cos(α+β) 

                 =Cos(α+β)[2Cos(αβ)+2] 

              =Cos(α+β).(b2+a2)       from  (1) 

Dividing equation  (1)  with  b2+a2 , we get

 b2a2b2+a2=Cos(α+β) 


4. Prove  Cosα+Cosβ+Cosγ+Cos(α+β+γ)=4Cos(α+β2).Cos(β+γ2).Cos(γ+α2) 

Ans- 

Starting with the left-hand side and using the trigonometric addition identities for the cosine function, we obtain

 L.H.S.=Cosα+Cosβ+Cosγ+Cos(α+β+γ) 

                 =2Cos(α+β2).Cos(αβ2)+2Cos(α+β+γ+γ2).Cos(α+β+γγ2) 

                =2Cos(α+β2).Cos(αβ2)+2Cos(α+β2).Cos(α+β+2γ2) 

                =2Cos(α+β2)[Cos(αβ2)+Cos(α+β+2γ2)] 

            =2Cos(α+β2)[2Cos(αβ2+α+β+2γ22).Cos(α+β+2γ2αβ22)] 

                =2Cos(α+β2)[2Cos(α+γ2).Cos(β+γ2)] 

               =4Cos(α+β2).Cos(β+γ2).Cos(γ+α2) 

               =R.H.S. 

           

5. Prove that  Sin3x+Sin2xSin2x=4Sinx.Cosx2.Cos3x2  

Ans- 

Starting with the left-hand side and using the trigonometric addition identity for the sine function, we obtain

 L.H.S.=sin3x+sinxsin2x 

                 =2cos(3x+x2).Sin(3x+x2)+Sin2x 

                 =2cos2x.sinx+sin2x 

                 =2cos2x.sinx+2sinxcosx 

                 =2sinx[cos2x+cosx] 

                 =2sinx[2cosx3x2.cosx2] 

                 =4sinxcosx3x2cosx2 

                 =R.H.S. 


6. Prove that  2cosπ13.cos9π13+cos3π13+cos5π13=0  

Ans- 

Starting with the left-hand side using the trigonometric addition identities for the cosine and sine function, we obtain

 L.H.S.=2cosπ13.cos9π13+cos3π13+cos5π13 

                 =cos(π13+9π13)+cos(π139π13)+cos3π13+cos5π13 

                 =cos10π13+cos18π13+cos3π13+cos5π13 

                 =cos(π3π13)+cos(π5π13)+cos3π13+cos5π13 

                 =cos3π13cos5π13+3π13+cos5π13 

                 =0 

                 =R.H.S. 


7.  Find the value of  tan(α+β) given that  cotα=12,α(π,3π2)  and  Secβ=53,β(π2,π)  

Ans- 

We know that,

 tan(α+β)=tanα+tanβ1tanαtanβ 

Given,

 Cotα=12 

 tanα=2 

Now, let us find  tanβ 

 1+tan2β=Sec2β 

 1+tan2β=(53)2[Secβ=53] 

 tanβ=±43 

 tanβ=43[β(π2x)] 

Therefore, we have that

 tan(α+β)=24312(43) 

                     =211 


  1. Prove that  Sec8A1Sec4A1=tan8Atan2A  

Ans- 

Starting with the left-hand side and using the trigonometric elementary identities of the cosine function and sine function, we obtain

 L.H.S.=sec8A1sec4A1 

                =1Cos8A11Cos4A1 

                =1Cos8A1Cos4A×Cos4ACos8A 

                =2Sin24A2Sin22A.Cos4ACos8A 

                =(2Sin4A.Cos4A).Sin4A2Sin22A.Cos8A 

                =Sin8A(2Sin2A.Cos2A)2Sin22A.Cos8A 

                =Sin8ACos2ASin2A.Cos2A 

                =tan8Atan2A 

                =R.H.S. 


  1. Prove that  Cos2x+Cos2(x+π3)+Cos2(xπ3)=32  

Ans- 

Starting with the left-hand side and using trigonometric addition identities of the cosine function, we obtain

 L.H.S.=1+Cos2x2+1+Cos(2x+2π3)2+1+Cos(2x2π3)2 

                =12[1+1+1+Cos2x+Cos(2x+2π3)+Cos(2x2π3)] 

                =12[3+Cos2x+Cos(2x+2π3)+Cos(2x2π3)] 

                =12[3+Cos2x+2Cos(2x+2π3+2x2π32).Cos(2x+2π32x+2π32)] 

                =12[3+Cos2x+2Cos2x.Cos4π6] 

                =12[3+Cos2x+2Cos2x.Cos2π3] 

            =12[3+Cos2x+2Cos2x.Cos(ππ3)] 

                =12[3+Cos2x+2Cos2x.(12)] 

                =32 

                =R.H.S. 


  1.  Prove that  Cos2x.Cosx2Cos3x.Cos9x2=Sin5xSin5x2  

Ans- 

Starting with the left-hand side and using trigonometric addition identities for the cosine function, we obtain

 L.H.S.=12[2Cos2x.Cosx22Cos3x.Cos9x2] 

                =12[Cos(2x+x2)+Cos(2xx2)Cos(9x2+3x)Cos(9x23x)] 

                =12[Cos5x2+Cos3x2Cos15x2Cos3x2] 

               =12[Cos5x2Cos15x2] 

              =12[2Sin(5x2+15x22).Sin(5x215x22)] 

              =Sin5x.Sin(5x2) 

              =Sin5x.Sin5x2 

              =R.H.S. 


  1.  Prove that  Cos20.Cos40.Cos60.Cos80=116  

Ans- 

Starting with the left-hand side and using the trigonometric addition identities of the cosine function, we obtain

 L.H.S.=Cos20.Cos40.Cos60.Cos80 

                 =Cos60.Cos20.Cos40.Cos80 

                 =12.12Cos40(2Cos20.Cos80) 

                 =14Cos40[Cos(80+20)+Cos(8020)] 

                 =14Cos40[Cos100+Cos60] 

                =14Cos40[Cos100+12] 

                =18(2Cos100Cos40)+18Cos40 

           =18[Cos(100+40)+Cos(10040)]+18Cos40 

               =18[Cos140+Cos60]+18Cos40 

               =18[Cos140+12]+18Cos40 

              =18Cos(18040)+116+18Cos40 

              =18Cos40+116+18Cos40 

              =116 

             =R.H.S. 


  1.  If  tanx=34,π<x<3π2, Find the value of  Sinx2,Cosx2  and  tanx2  

Ans- 

Given that

 π<x<3π2  implying that  x  is in the third quadrant 

 π2<x2<3π2 

Therefore, we have that  Sinx2  is positive and  Cosx2  is negative.

Let us find for  tanx2 

We know

 1+tan2x=Sec2x54 

 1+(34)2=Sec2x 

    Sec2x=±2516 

      Cosx=±45 

      Cosx=45[π<x<3π2] 

Let us find the required values 

 Sinx2=1Cosx2 

              =1+452 

              =910 

              =310 

  Cosx2=1Cosx2 

                  =1452 

                  =110 

                 =110 

  tanx2=310110 

                =3 


The Formula for Function of Trigonometric Ratios

Formulas for Angle θ

Reciprocal Identities

sin θ = Opposite Side/Hypotenuse

sin θ = 1/cosec θ

cos θ = Adjacent Side/Hypotenuse

cos θ = 1/sec θ

sec θ = Hypotenuse/Adjacent Side

sec θ = 1/cos θ

cosec θ = Hypotenuse/Opposite

cosec θ = 1/sin θ

tan θ = Opposite Side/Adjacent

tan θ = 1/cot θ

cot θ = Adjacent Side/Opposite

cot θ = 1/tan θ


Trigonometric Table

Trigonometric Ratios/

angle= θ in degrees

0 °       

30 ° 

45 °     

60 °   

90 °

Sin θ

0

1/2

1/√2

√3/2

1

Cos θ

1

√3/2

1/√2

1/2

0

Sec θ

1

2/√3

√2

2

Cosec θ

2

√2

2/√3

1

Tan θ

0

1/√3

1

√3

Cot θ

√3

1

1/√3

0


Important Questions for Class 11 Maths Chapter 3 Based on Exercise

Q. An engine produces 360 revolutions in one minute. Through how many radians will it turn in one second?

Solution:

Provided,

The total number of revolutions made by an engine in one minute = 360

1 minute = 60 seconds

Therefore, number of revolutions in 1 second = 360/60 = 6

Angle formed in 1 revolution = 360°

Angles formed in 6 revolutions = 6 × 360°

Radian measure of the angle in a total of six revolutions = 6 × 360 × π/180

= 6 × 2 × π

= 12π

So, the engine turns 12π radians in one second.


Practice Questions

  • Prove that:
    (sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x

  • Find the value of tan 765° cot 675° + tan 225° cot 405°

  • Solve the equation: tan² θ + cot² θ = 2

  • Write the value of 2sin 75° sin 15°

  • Show that:
    tan 4A = (cos8Acos5A - cos12Acos9A) / (sin8Acos5A + cos12Asin9A)

  • Find the general solution of the following equation:
    tan2θ +(1 – √3) tan θ – √3 = 0

  • Prove that:
    3sinπ/6secπ/3 - 4sin5π/6cotπ/4 = 1

  • Find the value:
    cos4π/8 + cos43π/8 + cos45π/8 + cos47π/8

  • Show that:
    tan 15° + cot 15° = 4

  • Find the most general value of θ satisfying the equation tan θ = -1 and cos θ = 1/√2


Advantages of Opting Vedantu for Important Questions of Class 11 Maths: Chapter 3 Trigonometric

Vedantu offers several benefits to students using their platform for the "Important Questions for CBSE Class 11 Maths Chapter 3 - Trigonometric Functions (2024-25)":


  • Comprehensive Coverage: Vedantu's important questions are curated to cover a wide spectrum of topics within the chapter, ensuring a comprehensive understanding of trigonometric functions.

  • Strategic Exam Preparation: These questions are strategically selected to align with the CBSE curriculum and examination patterns, preparing students effectively for their exams.

  • Conceptual Clarity: Vedantu's platform emphasizes conceptual clarity by providing in-depth explanations and solutions for each question, helping students grasp the underlying principles.

  • Variety of Problem Types: The diverse range of questions offered by Vedantu challenges students to apply trigonometric concepts in various problem-solving scenarios, enhancing their problem-solving skills.

  • Self-Assessment and Practice: Students can use these questions for self-assessment and regular practice, enabling them to gauge their progress and identify areas that need improvement.

  • Flexibility and Convenience: Vedantu's platform allows students to access these questions anytime, anywhere, providing flexibility in their study routine.


Conclusion

Trigonometric Functions is an important chapter in Class 11 Maths that helps build a strong foundation for advanced topics in calculus and geometry. Practising important questions from this chapter allows students to understand concepts like trigonometric identities, inverse functions, and their applications more clearly. The free PDF provides a variety of problems, making it easier for students to prepare effectively, boost their confidence, and perform well in exams. Regular practice of these questions ensures a better understanding of the topic and helps in scoring good marks.


Important Study Materials for Class 11 Maths Chapter 3 Trigonometric Functions


CBSE Class 11 Maths Chapter-wise Important Questions

CBSE Class 11 Maths Chapter-wise Important Questions and Answers cover topics from all 14 chapters, helping students prepare thoroughly by focusing on key topics for easier revision.


Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on CBSE Class 11 Maths Important Questions - Chapter 3 Trigonometric Functions

1. What topics should I focus on in Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions?

Focus on trigonometric ratios, relationships between them, trigonometric identities, angle measurement (radians and degrees), inverse trigonometric functions, and the graphs of trigonometric functions. These topics are key to mastering the chapter and solving important questions effectively.

2. Why is solving Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions beneficial?

Practising these questions strengthens your understanding of core concepts and improves problem-solving skills. It also helps you prepare for school exams and competitive tests by focusing on frequently asked and application-based problems.

3. How can I master trigonometric identities in Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions?

To excel in this area, memorise basic identities and practice applying them in various problems. Important questions from this chapter often involve proving identities and simplifying expressions, so regular practice is essential.

4. What types of problems are commonly included in Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions?

Common problems include proving trigonometric identities, solving trigonometric equations, simplifying expressions, converting angles between radians and degrees, and graph-based questions. These are frequently asked in exams and are covered in important questions.

5. How do Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions help in exam preparation?

Important questions provide a curated set of problems that focus on the most tested concepts and question patterns. Practising these helps you gain confidence, improve accuracy, and manage time effectively during exams.

6. Are graph-related questions included in Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions?

Yes, questions involving the graphs of sine, cosine, tangent, and their transformations are common in important question sets. Understanding these graphs is crucial for solving such problems.

7. Where can I find reliable resources for practising Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions?

You can find free PDFs of important questions for this chapter on Vedantu. These resources provide a variety of problems for practise, ensuring comprehensive preparation.

8. How can I avoid mistakes while solving Important Questions for CBSE Class 11 Maths Chapter 3 Trigonometric Functions?

To avoid mistakes, focus on understanding the concepts rather than memorising. Double-check conversions between radians and degrees, ensure correct application of identities, and practice regularly to reduce errors in calculation.

9. Why are trigonometric identities important?

Trigonometric identities simplify complex problems and are widely used in equations and proofs. They form the foundation for solving advanced questions in exams.