Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 12 Maths Important Questions - Chapter 9 Differential Equations

ffImage
banner

Important Questions for CBSE Class 12 Maths Chapter 9 Differential Equations FREE PDF Download

Looking for important questions from Chapter 9, Differential Equations, for CBSE Class 12 Maths? You’re in the right place! We’ve put together a collection of key questions according to the Latest Class 12 Maths Syllabus to help you prepare for your exams. This FREE PDF includes important topics like solving differential equations, applications in real-life problems, and methods like separation of variables and integrating factors. Download Class 12 Maths important Questions now to boost your preparation and practise effectively!

Courses
Competitive Exams after 12th Science
More Free Study Material for Differential Equations
icons
Ncert solutions
icons
Revision notes
icons
Ncert books

Access Important Question for Class 12 Mathematics Chapter 9 - Differential Equations

Very Short Answer Type Questions (1 Mark)

1. Write the order and degree of the following differential equations.

(1) dydx+cosy=0. 

Ans: dydx+cosy=0

y+cosx=0

Highest order of derivative =1

Order =1

Degree = Power of y

Degree =1

(ii)(dydx)2+3d2ydx2=4 

Ans:

(dydx)2+3d2ydx2=4 

Highest order of derivative = 2

Order = 2

Degree = Power of y

Degree = 1

(iii)  4yx4+sinx=(2yx2)5. 

Ans:

4yx4+sinx=(2yx2)5 

Highest order of derivative = 4

Order = 4

Degree = Power of y

Degree = 1

(iv) 5yx5+log(dydx)=0 

Ans:

5yx5+log(dydx)=0 

Highest order of derivative = 5

Order = 5

Degree = Power of y

Degree = not defined

(v)1+dydx=(2yx2)13 

Ans:

1+dydx=(2yx2)13 

Highest order of derivative = 2

Order = 2

Degree = Power of y

Degree = 2

(vi)[1+(dydx)2]32=k2yx2 

Ans:

[1+(dydx)2]32=k2yx2 

Squaring on both sides

[1+(dydx)2]3=(k2yx2)2 

Highest order of derivative = 2

Order = 2

Degree = Power of y

Degree = 2

(vii)(3yx3)2+(2yx2)3=sinx 

Ans:

(3yx3)2+(2yx2)3=sinx 

Highest order of derivative = 3

Order = 3

Degree = Power of y

Degree = 2

(viii) dydx+tan(dydx)=0 

Ans:

dydx+tan(dydx)=0 

Highest order of derivative = 1

Order = 1

Degree = Power of y

Degree = Not defined


2 Write the general solution of following differential equations

(i)dydx=x5+x22x 

Ans:

dydx=x5+x22x 

Integrating on both side 

dydxdx=x5dx+x2dx2xdx 

y=x66+x332log|x|+c 

(ii) (ex+ex)dy=(exex)dx 

Ans:

  (ex+ex)dy(exex)dx=0

  (ex+ex)dy(exex)dx=0

  (ex+ex)dy=(exex)dx 

  dydx=exexex+exdx

dy=exexex+exdx

Integrating both sides.

dy=exexex+exdx

 y=exexex+exdx

   t=ex+ex

 dtdx=(exex)

 dx=dtexex 

Putting value of t and dt in (1)

dy=exextdtexex.

  dy=dtt  

  y=log|t|+c 

Putting back t=exex

y=log(exex)+C

(iii) dydx=x3+ex+xe 

Ans:

dydx=x3+ex+xe 

dy=(x3+ex+xe)dx 

Integrating on both sides

dy=(x3+ex+xe)dx 

y=x44+ex+xedx 

y=x44+ex+xe+1e+1+c 

(iv)dydx=5x+y 

Ans:

dydx=5x+y 

dydx=5x.5y 

15ydy=5xdx 

Integrating on Both sides

15ydy=5xdx

5y=5x+c

5x+5y=c

(v) dydx=1cos2x1+cos2y 

Ans:

dydx=1cos2x1+cos2y 

We know that

cos2x=2cos2x1

Putting x=x2

  cos2x2=2cos2x21  

  cosx=2cos2x21  

  1+cosx=2cos2x2 

We know

cos2x=12sin2x

Putting x=x2

 cos22x2=12sin2x2  

 cosx=12sin2x2  

 1cosx=2sin2x2

 dydx=1(12sin2x)1+12sin2y 

 dydx=sin2x(1sin2y) 

 (1sin2y)dy=sin2xdx

Integrating on both sides

(1sin2y)dy=sin2xdx 

yy2+sin2y4=x2sin2x4+c 

y2+sin2y4=x2sin2x4+c  

By equating 

2y+sin2y=2xsin2y+c 

2y2x+sin2ysin2x=c2(yx)+sin2ysin2x=c 

(vi)dydx=12y3x+1 

Ans:

dydx=12y3x+1 

2y+sin2y=2xsin2y+c 

2y2x+sin2ysin2x=c2(yx)+sin2ysin2x=c 

Integrating on both sides

(112y)dy=(13x+1)dx 

12log(12y)=13log(3x+1) 

2log(3x+1)+3log(12y)=c


3. Write integrating factor of the following differential equations.

(I) dydx+y=cosxsinx 

Ans:

dydx+y=cosxsinx 

dy/dx+y=cosxsinx is a linear differential equation of the type dydx+py=Q

Here  I.F.=e1.dx=ex

Its solution is given by yex=ex(cosxsinx)dx

yex=excosxdxexsinxdx

Integrate by parts yex=excosxsinxexdxexsindx

yex=excosx+C

y=cosx+Cex

(II) dydx+ysec2x=secx+tanx 

Ans:

dydx+ysec2x=secx+tanx 

dydx+Py=Q.

etanx(dydx+ysecx)dx=etanxtanxsecx

yetanx=etanx(tanxsec1xdx)

I=etanxtanxsec1xdx

t=tanx

dt=sec2udn

1Iettdt

ettetdt

tarxettanxetetanx+c

yetanx=tanxetanxetanx+C

(III) xdydx+ylogx=x+y

Ans:

 dydx=yx[logyx+1]  

  y=Vx  

 dVVlogV=dxx  

 logV=xc

 yx=ecxy=xecx 

(IV) xdydx3y=x2

Ans:

xdydx3y=x2

 xdydx+3y=x2  

 dydx+3xy=x 

y.I.F=I.Fq(x)dx

p(x)=3xq(x)=x    

I.F.=e3x dx    

=e3lnx   

=(e)lnx3  

=x3   

 yx3=x3xdx  

 yx3=x55+c  

 y=x25+cx3

(V) dydx+ytanx=secx 

Ans:

We have, dydx+ytanx=secx

which is a linear differential equation Here, P=tanx,Q=secx,

I.F. =etanxdx=elogsecx=secx

The general solution is

ysecx=secxsecx+C

ysecx=sec2xdx+C

ysecx=tanx+C


4. Write order of the differential equation of the family of following curves

(I)y = Aex + Bex+c 

Ans:

y = Aex + Bex+c 

y=ex(A+Bec)=Rex      

dydx = Aex + Bex+c   dydx=y 

Therefore, order is 1.

(II)Ay = Bx2 

Ans:

Ay = Bx2 

Differentiating wrt x

 Adydx=B 

 (2x)dydx=2BxA 

Therefore, order is 1.

(III)(x  a)2 + (y  b)2 = 9 

Ans:

(x  a)2 + (y  b)2 = 9 

Differentiate w.r.t x

ddx(x  a)2 + ddx(y  b)2 = 9 

2(xa)ddx(xa)+2(yb)ddx(yb)=0 

2(xa)(dydx0)+2(yb)(dydx0)=0 

(xa)+(yb)dydx=0 

(xa)=   (yb)dydx    

dydx=xa(yb) 

ddx(xa)=ddx[(by)dydx] 

dxdxddx(a)=(by)d2ydx2+dydx 

[ddx(by)]10=(by)d2ydx2+dydx(dydx) 

1=(by)d2ydx2(dydx)2

Hence, the order is 2.

(IV)Ax + By2 = Bx2  Ay 

Ans:

Ax + By2 = Bx2  Ay 

Ax+By2=Bx2Ay

Ax+Ay=Bx2By2

A(x+y)=B(x2y2)

A(x+y)=B(x+y)(xy)

A=B(xy)   

AB=xy 

AB+y=x 

Differentiate w.r.t x

dydx(AB)+dydxy=dydxx 

Therefore, the order is 1.

(V)x2a2y2b2=0 

Ans:

x2a2y2b2=0  

 x2a2=y2b2  

 x2=a2b2y2  

 x=±aby

 x=aby  

1=abdydx  

dydx=ba

 aby=x  

 abdydx=1  

dydx=ba

Therefore, the order is 1.

(VI)y = a cos (x + b) 

Ans:

Given y=acos(x+b) 

Differentiating it w.r.t x

dxdy=asin(x+b) 

Therefore, the order is 1.

(VII)y = a + bex+c 

Ans:

y = a + bex+c 

y=a+bex+c

bex+c=ya  

dydx=bex+c  

 dydx=bex+c=ya  

 diff -  wrt x  

d2ydx2=dydx 

Hence, the order is 2.


5. (i) Show that  y=emsin1xis a solution of

   

 (1x2)d2ydx2xdydxm2y=0

Ans:

Using the Chain Rule, we get,

 y1=dydx=(emsin1x)ddx(msin1x)  

=y{m1x2}  

y11x2=my.  

 y12(1x2)=m2y2

W.r.t x, using the product and chain rule

 y12ddx(1x2)+(1x2)ddx(y12)=m2ddx(y2),  

 y12(2x)+(1x2)(2y1)ddx(y1)=m2(2y)ddx(y)

y12(2x)+(1x2)(2y1)(y2)=m2(2y)(y1)

Dividing by 2y10, we get,

(1x2)y2xy1=m2y

Hence, the Proof.

(ii) Show that y=sin(sinx) is a solution of differential equation

d2ydx2+(tanx)dydx+ycos2x=0

Ans:

y = sin(sin x)  

dy/dx = cos (sinx). cosx 

 and d^2y/dx2   = -sin (sinx). cos2x - sinx cos (sinx) 

 LHS = - sin(sinx) cos2x - sinx cos(sinx) + sinx/ cosx cos (sinx) cosx + sin (sinx) cos2   x  

= 0 = RHS

  y = sin(sinx) 

 dy/dx=cosxcos(sinx) 

 d2y/dx2= -cosxcosxsin(sinx)-sinxcos(sinx) 

 d2y/dx2= -ycos2x-(sinx/cosx)dy/dx 

 d2y/dx2+tanx(dy/dx)+ycos2x 

 = 0

(III) Show that y=Ax+Bx is a solution  x2d2ydx2+xdydxy=0

Ans:  

Here ‘a’ and ‘b’ are arbitrary 

Given solution 

 y = ax + (b/x), x  0 

 y = ax + (b/x) ... (1) 

  xy = ax2 + b 

Differentiate with respect to ‘x’

xy + y . 1 = a (2x) = 2ax ... (2)  

Differentiate with respect to ‘x’

Differentiate again w.r.t ‘x’

xy + y . 1 + y = 2a  xy + 2y = 2a  (3) 

Substitute (3) in (2)

xy + y = (xy + 2y)x    

xy + y = x2y + 2xy 

=x2y + xy  y  

= 0 

Hence, Proved

(IV) Show that y=acos(logx)+bsin(logx) is a solution of

x2d2ydx2+xdydx+y=0

Ans:

y=acos(logx)+bsin(logx)

Differentiating w.r.t. x, 

dydx=asin(logx)×1x+bcos(logx)×1xd2ydx2 

=a[cos(logx)×1x×x1sin(logx)x2]+b[sin(logx)×1x×x1cos(logx)x2] 

x2d2ydx2=acos(logx)+asin(logx)bsin(logx)bcos(logx) 

x2d2ydx2=[acos(logx)+bsin(logx)][asin(logx)+bcos(logx)] 

=yxdydx 

[ (1) and (2)] 

x2d2ydx2+xdydx+y=0 

(V) Verify that y=log(x+x2+a2) satisfies the differential equation:

(a2+x2)d2ydx2+xdydx=0

Ans: Given

y = l o g ( x + x2+a2) 

On differentiating with x, we get

dydx=1x+x2+a2(1+xx2+a2)

=1x2+a2

On differentiating again with x, we get

d2ydx2=x(x2+a2)32

Now let's see what is the value of d2ydx2+xdydx

=x(x2+a2)32+xx2+a2

Conclusion: Therefore,

   y=log(x+x2+a2)   

Is not the solution of d2ydx2+xdydx=0

(VI) Find the differential equation of the family of curvesy = ex (A cos x + B sin x) , where A and B are arbitrary constants.

Ans:

y = ex(Acosx + Bsinx) .....(1) 

   (dy/dx) = ex[ A sin x + B cosx] + [Acosx + Bsinx]ex  

  (dy/dx) = ex[(B  A) sin x + (B + A) cos x] 

  (dy/dx) = ex[(A + B) cos x  (A  B) sin x] .....(2) 

   (d2y/dx2) = ex[(A + B) cos x  (A  B) sin x] + ex[ (A + B) sin x  (A  B) cos x] 

      (d2y/dx2) = ex[2B cos x  2A sin x]  

 (d2y/dx2) = 2ex[B cos x  A sin x]  

    (d2y/dx2) × (1/2) = ex[B cos x  A sin x] .....(3) 

 (1) + (3) y + (1/2)(d2y/dx2) = ex[(A + B) cosx  (A  B) sinx]  

   y + (1/2)(d2y/dx2) = (dy/dx)  (2)  

  (d2y/dx2)  2(dy/dx) + 2y = 0 

(vii) Find the differential equation of an ellipse with major and minor axes 2a and 2b respectively.

Ans:

Equation of ellipse

x2a2+y2b2=1 

Differentiate w.r.t x

  2a2[yd2ydx2+(dydx)2]+2b2=0  

  yd2ydx2+(dydx)2=pb2ka2=b2a2=yxdydx  

 yd2ydx2+(dydx)2=yxdydx  

 xydydx2+x(dydx)2=ydydx 

(viii) Form the differential equation representing the family of curves (y  b)2= 4(x  a). 

Ans:

The general equation of the given family of curves

(yb)2=4(xa)(i) 

Differentiating (i) w.r.t.x, we

get

2(yb)dydx=4(yb)y=2 ...(ii) 

Where dydx=y. 

Differentiating (ii) w.r.t.y, we

get

$(y-b){y}''+{{\left( {{y}'} \right)}^{2}}=0\quad\text{ }\!\!~\!\!\text{ }\ldots 

(iii)$,

where d2ydx2=y

Putting (yb)=2y from (ii) in (iii),

 we get 2yy+(y)2=02y+(y)3=0

Hence, 2d2ydx2+(dydx)3=0 is the required differential equation.


6. Solve the following differential equations.

(I)dydx+ycotx=sin2x 

Ans:

dydx+ycotx=sin2x 

Comparing equation (1) by dydx+Py=Q 

P=cotx,Q=sinx

I.F. =ecotxdx

I.F =elogsinx=sinx

Multiplying equation (1) by sinx sinxdydx+sinxcotxy=sin2x

sinxdydx+cosxy=1cos2x

ddx(sinxy)=1cos2x

  [ddx(sinxy)]dx=1dxcos2xdx  

  ysinx=x1+cos2x2dx  

  ysinx=x12dx12cos2xdx  

  ysinx=x12x12sin2x2+C  

  ysinx=12x14sin2x+C

(II)xdydx+2y=x2logx 

Ans:

xdydx+2y=x2logx 

dydx+2xy=xlogx  ......(1)

Comparing equation (1) by dydx+Py=Q

P=2x,Q=xlogx

. I.F. =e2xdx=e2logx=elogx2=x2

Multiplying equation (1) by x2

x2dydx+x2×2xy=x3logx

x2dydx+2xy=x3logx

ddx(x2y)=x3logx

Integrating both sides w.r.t. x

x2y=x3logxdx+C 

=logxx3dx{ddx(logx)x3dx}dx+C 

(Taking logx as first function) =x44logx1x×x44dx+C

=x44logx14x3dx+C

=x44logx14×x44+C

x2y=116x4[4logx1]+C

16x2y=4x4logxx4+C

(III)  dxdy+1x.y=cosx+sinxx,x>0 

Ans: dxdy+1x.y=cosx+sinxx,x>0 

  P=1x,Q=cosx+sinxx  

I.F=ePdx=e1xdx=elogx=x

  y(I.F)=Q(I.F)dx 

  =(cosx+sinxx)xdx 

=cosxxdx+sinxdx 

=xsinxsinxdx+sinxdx+c 

=xsinx+c

(Iv)cos3xdydx+cosx=sinx 

Ans:

cos3xdydx+cosx=sinx 

Differentiate w.r.t y

 dydx+ycos2n=sinxcos3x  

 dydx+ysec2x=sinxcos3x 

  IF=esec2xdx=etanx  

  yetanx=ettanxtanxsec2xdx 

=ettdt 

=et(t1)+c 

ytanx=etanx(tanx1)+c 

(V)ydx+(xy3)dy=0 

Ans:

The given differential equation is

ydx+(xy3)dy=0 

ydxdy+(xy3)=0

ydxdy+x=y3

dxdy+xy=y2

which is a linear differential equation

 Thus, IF=edyy=elogy=y

Multiplying both sides of E (i) by IF and integrating,

we get

x(IF)=Q(IF)dy+c

xy=y3dy+c

=y44+c

which is the required solution.

(VI)yeydx=(y3+2xey)dy 

Ans:

yeydx=(y3+2xey)dy 

yey(y3+2xey)=dydx or, dxdy+(2y)x=y2ey,

which is linear in x.

I.F. =e2ydy=e2logy=1y2

Multiplying both sides by the I.F. and integrating, we get,

x1y2=eydy

x1y2=ey+C or x=y2ey+cy2

When x=0,y=1.0=e1+corc=1e.

Hence, the required particular solution is

x=y2ey+y2e


7. Solve each of the following differential equations:

(I)yxdydx=2(y2+dydx) 

Ans:

yxdydx=2(y2+dydx) 

Given differential equation can be written as 

 (x+2)dydx=y2y2 or dyy(12y)=dxx+2  

  dyy(12y)=dxx+2  

   [1y+212y]dy=dxx+2  

 log|y|log|1ay|  

 =log|x+2|+logC  

   y12y=C(x+2)  

  y=C(x+2)(12y)

(II)cos y dx + (1 + 2ex ) sin y dy = 0. 

Ans:

cos y dx + (1 + 2ex ) sin y dy = 0. 

  dx1+2ex=sinycosydy  

  ex2+exdx=sinycosydy  

  ln(ex+2)=ln|cosy|+lnC  

  ln(ex+2)=ln|cosy|C 

 ex+2=Ccosy(1)  

  ex+2=±Ccosyex+2=kcosy  

  x=0,y=π4 in (1)   

We get

 1+2=kcosπ4  

 k=32  

 ex+2=32cos 

Is the particular solution.

(III) x1+y2dx+y1+x2dy=0 

Ans:

x1+y2dx+y1+x2dy=0 

It is given that

x1+y2dx+y1+x2dy=0

We can write it as

x1+x2dx+y1+y2dy=0

By integrating the given terms, we get

x1+x2dx+y1+y2dy=c

Using the formula

ddx(1+x2)=2x21+x2=x1+x2

We get

1+x2+1+y2=C

(IV)(1x2)(1y2)dy+xydx=0 

Ans:

(1x2)(1y2)dy+xydx=0 

By simplifying the equation, we get

xydydx=1x2y2+x2y2 

xydydx=(1x2)(1y2) 

=(1x2)(1y2) 

y1y2dy=1x2xdx

Integrating both sides, we get

y1y2dy=1x2xdx

 1y2=t2ydy=dt  

  1x2=m22xdx=2mdmxdx=mdm  

  (i) 121tdt=mm21mdm

 12t1/21/2+m2m21dm=0t+m2+11m21dm=0  

  t+(1+1m21)dm=0t+m+12log|m1m+1|=0

Now substituting this value of t and m, we get

1y21x2+12log|1y211y2+1|+C=0 

(V)(xy2 + x) dx + (yx2 + y) dy = 0; y(0) = 1. 

Ans:

(xy2 + x) dx + (yx2 + y) dy = 0 

  (xy2+x)dx=(x2y+y)dy  

 x(y2+1)dx=y(x2+1)dy  

  x(x2+1)dx=y1+y2dy=2x(x2+1)dx=2y1+y2dy  

       

Integrating both sides

2x1+x2dx=2y1+y2dy

This is the integrals of the type

f(x)f(x)dx=log|f(x)|+clog|x2+1| 

=log|y2+1|+logclog|x2+1|+log|y2+1| 

=logclog|x2+1||y2+1|=logc 

c=|x2+1||y2+1| 

(VI) dydx=ysin3xcox2x+xex 

Ans:

dydx=ysin3xcox2x+xex 

  dydx=sin3xcos2x+xex(1)  

 dy=[(sin3xcos2x)+xex]dx2  

    

Taking the integral sign in both side of equation (2)

dy=sin3xcos2xdx+xexdx+c

  sin3xcos2xdx wt cosx=t  

 sinxsin2xcos2xdx  

 sinx(1cos2x)cos2xdx  

  (1t2)t2dtt2t4dt

=[t33t55] 

[cos3x3cos5ts] 

xexdx=xendxddxxexdx]dx 

=xexexdx 

=xexex 

=ex(x1) 

From Equation (3)

     

 y=[cos3x3cos5x5]+en(x1)+C

(VII)sec2xtanydx+sec2ytanxdy=0 

Ans:

Given equation:

sec2xtanydx+sec2ytanxdy=0

Dividing both sides by tanytanx

 sec2xtanydx+sec2ytanxdytanytanx=0tanxtany  

 sec2xtanydxtanytanx+sec2ytanxdytanytanx=0  

 sec2xtanxdx+sec2ytanydy=0

Integrating both sides

 (sec2xtanxdx+sec2ytanydy)=0  

 sec2xtanxdx+sec2ytanydy=0  

 u=tanx , v=tany

Diff u w.r.t. x and v w.r.t y

 dudx=sec2x

dusec2x=dx

dvdy=sec2y  

dvsec2y=dy

Therefore, our equation becomes

sec2xtanxdx+sec2ytanydy=0

 sec2xtanxdusec2x+sec2yvdvsec2y=0  

  duu+dvv=0  

 log|u|+log|v|=logc  

  u=tanx and v=tany  

 log|tanx|+log|tany|=logc  

 log|tanx+tany|=logc 

 tanxtany=C


8. Solve the following differential equations:

(I)x2ydx(x3+y3)dy=0 

Ans:

(x3+y3)dyx2ydx=0 

Is rearranged as 

     

dydx=x2yx3+y3  

   yx=vy=vx  

 dydx=v+xdvdx  

  v+xdvdx=v1+v3  

xdvdx=v1+v3v=v41+v3  

 1+v3v4dv=dxx

Integrating both sides, we get (1v4+1v)dv=dxx

13v3+log|v|=log|x|+C

x33y3+log|(yx)|=log|x|+C

x33y3+log|y|=C

Is the solution of the given differential equation.

(II)x2dydx=x2+xy+y2 

Ans:

Solution of the given differential equation Re-writing the given equation as

x2dydx=x2+xy+y2 

dydx= 1+y2x2+yx 

It is clearly a homogenous differential equation

Assuming y=vx 

Differentiating both sides

dydx=v+xdvdx

Substituting dydx from the given equation

1+y2x2+yx=v+xdvdx

1+v2+v=v+xdvdx

1+v2=xdvdx

dxx=dv1+v2

Now integrating both sides

dxx=dv1+v2

lnx=arctanv+c

Formula 

   dxx=lnxdv1+v2=tan1v  

  v=yx  

 lnx=tan1yx+c  

  

Is the solution of given differential equation.

(III) (x2y2)dx+2xydy=0,y(1)=1 

Ans:

  (x2y2)dx+2xydy=0  

  dydx=(x2y2)2xy  

   

It is homogeneous differential equation.

Putting y=uxu+xdudx=dydx

From (I)

 u+xdudx=x2(1u2)2x2u=(1u22u)  

xdudx=[1u22u+u]  

xdudx=[1+u22u]  

2u1+u2du=dxx 

Integrating both sides, we get

2udu1+u2=dxx

log|1+u2|=log|x|+logC

log|x2+y2x2||x|=logC

x2+y2x=C

x2+y2=Cx

Given that y=1 when x=1 1+1=CC=2

Solution is x2+y2=2x.

(IV)dydx=yx+tan(yx) 

Ans:

xdydx=y+xtan(yx) 

dydx=yx+tan(yx) 

y=vx 

dydx=v+xdvdx 

   v+xdvdx=v+tanv 

   xdvdx=tanv 

dvtanv=dxx 

cosvsinvdv=dxx 

 logsinv=logx+logc 

logsin(yx)=logcx 

sin(yx)=cx 

sin(yx)=cx 

(V) dydx=2xyx2+y2 

Ans:

(x2+y2)dydx=2xy

dydx=2xyx2+y2

dydx=(x2+y2)/2xy.(i)

Let x=vy

Here, differentiating w.r.t. y,

dxdy=v.(dydx)+y(dvdy)

dxdy=(v+y)(dydx)

Here, from e (i),

  v+y(dvdy)=(v2y2+y2)/2vy2  

v+y(dvdy)=y2(v2+1)/y22v  

  v+y(dvdy)=(v2+1)/2v  

 y(dvdy)=((v2+1)/2v)(v/1)  

y(dvdy)=(v2+12v2)/2v  

 y(dvdy)=(v2+1)/2v  

  y(dvdy)=(1v2)/2v  

  2v/(1v2)dv=1ydy

Integrating both sides

    

 2v(v21)dv=dyy  

log|v21|=logy+logc  

  log|v21|y=logc  

v2yy=c  

  (x2y2)x(yy)=c  

 (x2y)y=c  

 x2y2y=c  

  x2y2=cy

(VI) dydx=ex+y+x2ey 

Ans:

From the integral

dydx=ex+y+x2ey  

dydx=exey˙+x2ey  

 dydx=ey(ex+x2)  

 dyey=(ex+x2)dx  

 logey=ex+x33+C  

 y=ex+x33+C

(VII) dydx=1y21x2 

Ans:

dydx=1y21x2 

It is given that

dydx1y21x2=0

We can write it as

dydx=1y21x2

By cross multiplication

11y2dy=11x2dx

By integrating both sides w.r.t x

11y2dy=11x2dx 

We get

sin1y=sin1x+c

(VIII) (3xy+y2)dx+(x2+xy)dy 

Ans:

  dydx=(3xy+y2x2+xy)  

   y=vxdydx=v+xdvdx  

  v+xdvdx=(3xvx+v2x2x2+xvx)  

xdvdx=3vv21+vv  

xdvdx=3vv2vv21+v  

xdvdx=2v24v1+v

1+v2v2+4vdv=1xdx  

1+v2v2+4vdv=1xdx  

  142+2v2v+v2dv=1xdx  

  14log|v2+2v|=log|x|+c  

  14log(y2x2+2yx)x=c  

 log(y2x+2y)=4c


9. (I) Form the differential equation of the family of circles touching y-axis at (0, 0).

Ans:

The centre of the circle touching the y-axis at origin lies on the x-axis.

Let (a, 0) be the centre of the circle.

Since it touches the y-axis at origin, its radius is a.

Now, the equation of the circle with centre (a, 0) and radius (a) is

(xa)2+y2=a2.  

x2+y2=2ax 


differential equation of the family of circles touching y-axis at (0, 0


Differentiating equation (1) with respect to x, we get:

2x+2yy=2a

x+yy=a

Now, on substituting the value of a in equation (1), we get:

x2+y2=2(x+yy)x

x2+y2=2x2+2xyy

2xyy+x2=y2

This is the required differential equation.

(ii) Form the differential equation of family of parabolas having vertex at (0, 0)  and axis along the

 (i) positive y-axis 

Ans:

The equation of the parabola having the vertex at origin and the axis along the positive

y-axis is:

x2=4ay…….1


Positive y-axis


Differentiating equation (1) with respect to x, we get:

 2x=4ay……(2)

Dividing equation (2) by equation (1), we get:

2xx2=4ay4ay

2x=yy

xy=2y

xy2y=0

This is the required differential equation.

(ii) Positive x-axis

Ans: 

Since parabola has axis along positive x-axis,

its Equation: y2=4ax...(1)


Positive x-axis


Diff. w.r.t. x

ddx(y2)=ddx(4ax)  

2ydydx=4a

Putting Value of 4 a in (1)

 y2=2ydydx×x  

 y22xydydx=0 

(iii) Form differential equation of family of circles passing through origin and whose Centre lie on x-axis.

Ans:

Equation of circle is (x  a) + y = a ... (1)  ( ' a' arbitrary constant)

Differentiate with respect to 'x'

2(xa)+2ydydx=0

(xa)+ydydx=0a=x+ydydx

Substituting in (1) y2(dydx)2+y2=(x+ydydx)2

y2(dydx)2+y2=x2+2xydydx+y2(dydx)2

x2+2xydydxy2=0

(iv) Form the differential equation of the family of circles in the first quadrant and touching the coordinate axes.

Ans:

Let the equation of the circle be

(xa)2+(ya)2=a2

x2+y22a(x+y)+a2=0

2x+2y2a(1+y1)=0

x+ya(1+y1)=0

a=x+y1+y1

Hence, the required differential equation is

x2+y22(x+y1+y1)(x+y)+(x+y1+y1)2=0

(1+y1)2(x2+y2)2(x+y)2(1+y1)+(x+y)2=0


10. Show that the differential equation dydx=x+2yx2y  is homogeneous and solve it.

Ans:

Step 1: Find dydx

(x2y)dydx=x+2y  

dydx=(x+2yx2y)

Step 2: Put F(x,y)=dydx  Find F(λx,λy)

dydx=(x+2yx2y)

Put F(x,y)=(x+2yx2y)

Finding

  F(λx,λy)

 F(λx,λy) =λx+2(λy)λx2λy  

  =λ(x+2y)λ(x2y)  

  =(x+2y)x2y  

  =F(x,y)

Thus,  F(λx,λy) =F(x,y)=λF(x,y)

Thus, F(x,y) is Homogeneous function of degree zero

Therefore, the given Differential Equation is Homogeneous

differential Equation

Step 3: Solving dydx by Putting y=vx

dydx=(x+2yx2y)

Let y=vx

So, dydx=d(vx)dx

  dydx=dvdxx+vdxdx  

 dydx=dvdxx+v 

Putting in eqn, (1)

   dydx , yx   

  dydx=x+2yx2y  

  dvdxx+v=x+2vxx2vx  

  dvdxx+v=x(1+2v)x(12v)  

  dvdxx+v=1+2v12v  

  dvdxx=1+2v12vv  

 dvdxx=1+2vv+2v212v 

  dvdxx=2v2+v+112v  

 dvdxx=(2v2+v+12v1)  

 dv(2v12v2+v+1)=dxx

Integrating Both Sides

  2v12v2+v+1dv=dxx  

2v12v2+v+1dv=dxx  

  (2v1)dv2v2+v+1dv=log|x|+c 

By equating

log|x2+xy+y2|=23tan1(x+2y3x)+c


12. Solve the following differential equations:

(i) dydx2y=cos3x

Ans:

dydx+(2)y=cos3x(1)

This is a linear differential equation of the form

dydx+Py=Q, where P=2 and Q=cos3x

Multiplying both sides by (1), we get

e2xdydx2ye2x=cos3xe2x

Integrating both sides w.r.t. x, we get

  ye2x=e2xcos3xdx+C  

  ye2x=I+C,  

  I=etxcos3x. 

   I=e2xcos3xdx 

  =13e2xsin3x(2)3e2xsin3xdx 

  =13e2xsin3x+23[13e2xcos3x(2)e2t(cos3x3)dx  

  =13e2πsin3x+23[13e2xcos3x23e2xcos3xax]  

 =13e2xsin3x29e2xcos3x49I 

  (I+49I)=e2x9(3sin3x2cos3x)  

  I=e2x13(3sin3x2cos3x)  

     

Substituting the value of 1 in (2)

ye2x=e2x13(3sin3x2cos3x)+C

y=3sin3x132cos3x13+ce2x

(II) sinxdydx+ycosx=2sin2xcosx if y(π2)=1

Ans: 

Given

   (sinx)dydx+ycosx=2sin2xcosx  

  1sinx[(sinx)dydx+ycosx]=2sin2xcosx×1sinx  

  dydx+(cosxsinx)y=2sinxcosx  

 dydx+(cotx)y=2sinxcosx 

This is a first order linear differential equation of the form

dydx+Py=Q

Here, P=cotx and Q=2sinxcosx

The integrating factor (I.F) of this differential equation is,

I. F=ePdx

I. F=ecotxdx

We have

  cotxdx=log(sinx)+c  

   IF=elog(sinx)  

  I. F=sinx[elogx=x]  

   

Hence, the solution of the differential equation is,

y( I. F)=(Q×I.F)dx+c

y(sinx)=(2sinxcosx×sinx)dx+c

ysinx=2sin2xcosxdx+c

Let sinx=t

cosxdx= dt (Differentiating both sides)

By substituting this in the above integral, we get

  yt=2t2dt+c  

   xndx=xn+1n+1+c  

  yt=2(t2+12+1)+c  

  yt=2(t33)+c  

  yt=2t33+c  

y=2t23+ct

 y=2(sinx)23+csinx[t=sinx]  

 y=23sin2x+ccosecx  

 

Thus, the solution of the given differential equation is

y=23sin2x+c cosec x

(III) 3extanydx+(1ex)sec2ydy=0

Ans:

The given differential equation is

3extanydx+(1ex)sec2ydy=0

3ex(1ex)dx=sec2ytanydy

On Integrating, we get

3ex(1ex)dx=sec2ytanydy

3log|1ex|=log|tany|+c

tany=k(1ex)3 which is the required solution of the given differential equation.


13. Solve the following differential equations:

(i) (x3+y3)dyx2ydx=0  

Ans:

 (x3+y3)dyx2ydx=0 

 dydx=x2yx3+y3  

 dydx=1xy+y2x2  

   Let yx=vy=vxdydx=v+xdvdx  

    

So,our differential equations becomes

     

  v+xdvdx=11v+v2=v1+v3  

  xdvdx=v1+v3v=v41+v3  

 (1+v3v4)dv=dxx 

Integrating both sides

(1+v3v4)dv=dxx

     

  (1+v3v4)dv=dxx  

  (v4+1v)dv=dxx  

  v33logv=logx+c  

  13v3c=logx+logv  

 13v03c=log(vx)  

  x33y3=logy+c

Which is required solution.

(ii) xdyydx=x2+y2dx

Ans:

  Given   

 xdyydx=x2+y2dx  

 xdy=(y+x2+y2)dxdydx=y+x2+y2x 

   F(x,y)=y+x2+y2x

F(λx,λy)=λy+λ2x2+λ2y2λx

=λ{y+x2+y2}λx 

=λ.F(x,y) 

F(x,y) is a homogeneous function of degree zero.

Now, dydx=y+x2+y2x

Let y=vx

dydx=v+xdvdx

Putting above value, we have

v+xdvdx=vx+x2+v2x2x 

v+xdvdx=v+1+v2 

xdvdx=1+v2 

dxx=dv1+v2 

Integrating both sides, we get

dxx=dv1+v2

  logx+logc=log|v+1+v2|[dxx2+a2=log|x+x2+a2|+c] 

cx=v+1+v2 

cx=yx+1+y2x2 

cx=yx+x2+y2x 

cx2=y+x2+y2 

 

11. Show that the differential equation (x2+2xyy2)dx+(y2+2xyx2)dy=0

is homogeneous and solve it.

Ans:

  (x2+2xyy2)dx+(y2+2xyx2)dy=0  

   ordydx=(y22xyx2)(y2+2xyx2)  

  y=VX  

  dydx=v.1+xdvdx 

  v+xdvdx=v2x22vx2x2v2x2+2vx2x2 

  =(v22v1)/(v2+2v1) 

  xdvdx=v22v1v2+2v1 

  xdvdx=v22v1v32v2+vv2+2v1  

   or[v2+2v1v3v2v1]dv=1xdx  

v2+2v1v+1(v2+1)=Av+1+Bv+C(v2+1)

 Equating the coeff. of v2,v and constant terms.

A+B=1..(1)

B+C=2..(2)

A+C=1..(3)

Subtracting eqn. (2) from (1)

AC=1.. (4) 

 by eqn. (3) and (4) A=1,C=0

But

A+B=1.  

 1+B=1=>B=2 

[1v+1+2vv2+1]dv=1xdx

or. Integ.of [1/(v+1)2v/(v2+1)]dv= integ. of 1/x.dx

or. log(v+1)log(v+1)=logx+logC

or. log(v+1)/(v2+1)=logx.C

(IV) x2dy+y(x+y)dx=0 given that y=1 whenx=1. 

 Ans:

Given, x2dy+(xy+y2)dx=0

dydx=(xy+y2)x2

Put y=vx

or dydx=v+xdvdx

The differential equation becomes

v+xdvdx=(v+v2)

or dvv2+2v=dxx

or dv(v+1)212=dxx

or. 12logvv+2=logx+logC

or Cx=yy+2x

  If x=1,y=1, C=13  

  or   

 13x=yy+2x 

(V) xeyx+y+xdydx=0 ify(e)=0

Ans: Given differential equation is, (xeyx+y)dx=xdy

dydx=xeyx+yx..(i)

Let F(x,y)=xeyx+yx

F(λx,λy)=λxeλyλx+λyλx=λ0xeyx+yx=λ0F(x,y)

Hence, given differential equation (i) is homogenous.

Let y=vxdydx=v+xdvdx

Now, given differential equation (i) would become

 v+xdvdx=xevxx+vxx  

 v+xdvdx=ev+v  

  xdvdx=ev  

  dvev=dxx  

 evdv=dvv  

  ev1=logx+C  

 eyx=logx+C  

  1eyx=logx+C  

eyxlogx+Ceyx+1=0

Putting y(e)=0, we get

1yxlogx+C1yx+1=0

C=1e

 The required particular solution is

eyxlogx1eeyx+1=0

or eyxlogxeyx1+1=0

(VI) (x33xy2)dx=(y33x2y)dy

Ans:

Given differential equation is

 (x33xy2)dx=(y33x2y)dy  

 dydx=x33xy2y33x2y  

 =13(yx)2(y3)33(yx)

  v+xdvdx=13v2v33v, Let v=yx)  

 xdvdx=13v2v33vv  

 =13v2v4+3v2v33v  

 =1v4v33v  

  (v33v1v4)dv=dxx  

  (v31v4)dv(3v1v4)dv=dxx 

Integrating, we get

(v31v4)dv(3v1v4)dv=dxx

Integrating, we get

14log|1v4|+34log|v21v2+1|=log|x|+logc

14log|1(yx)4|+34log|(yx)21(yx)2+1|=log|xc|

which is the required solution

(VII) dydxyx+cosec(yx)=0 given that y=0 when x=1

Ans:

Differential equation is

dydx=yxcosec(yx)

Let F(x,y)=dydx=yxcosec(yx)

Finding F(λx,λy)

F(λx,λy)=λyλxcosec(λyλx)=yxcosec(yx)=λF(x,y)

F(x,y) is a homogenous function of degree zero

F(λx,λy)=λF(x,y)

Putting y=vx

Diff w.r.t. x

dydx=xdvdx+v

Putting value of dydx and y=vx in (1)

  dydx=yxcosec(yx)  

  v+xdvdx=vxxcosec(vxx)  

 v+xdvdx=vcosecv 

 xdvdx=cosecv  

 dvcosecv=dxx 

Integrating both sides

dvcosecv=dxx

sinvdv=log|x|+c

Put value of v=yx

cosyx=log|x|+C

Putting x=1 y=0

 cos01=log1+C  

  1=0+C[log1=0]

Putting value in (2)

c=1 

cosy2=log|x|+1 

cosy2=log|x|+loge 

cosy2=log|x| 


16. Solve the following differential equations:

(I)cos2xdydx=tanxy 

Ans:

Given differential equation is

 cos2xdydx+y=tanx  

 dydx+ysec2x=tanxsec2x

Given differential equation is a linear differential equation of the type dydx+py=Q 

I.F. =ePdx=esec2xdx=etanx

Solution is given by etanxy=tanxsec2xetanxdx

Let I=tanxsec2xetanxdx

Let tanx=t,sec2xdx=dt

I=tetdt

Integrating by parts I=tetetdt=tetet+C

I=tanxetanxetanx+C,

Hence etanxy=etanx(tanx1)+C

y=tanx1+Cetanx

(II) xcosxdydx+y(xsinx+cosx)=1.

Ans:

Given xcosx(dy/dx)+y(xsinx+cosx)=1.

dydx+y(xsinx+cosx)xcosx=1xcosx

dydx+(xsinxxcosx+cosxxcosx)y=1xcosx

dydx+(tanx+1x)y=1xcosx

It is linear differential equation in the form dydx+Py=Q

where P=tanx+(1x) and secxx

(I.F.)=e(tanx+(1/x))dx

=etanx+dx/x=elogsecx+logx=elog(xsecx)

=xsecx

Now, multiplying (1) by I.F. and integration, we get

y×I.F=Q×I.F+C

yxsecx=(secx/x)x(xsecx)dx+c

xysecx=sec2xdx+c=tanx+c

xysecx=tanx+C

Which is the required solution

(III).(1+exy)dx+exy(1xy)dy=0

Ans:

 (1+exy)dx=(xy1)exydy  

 dxdy=(xy1)exy(1+ey)=f(xy)  

    

Hence, homogeneous

dxdy=(xy1)exy(1+ey)=f(xy)

Equating Homogeneous,

  xvydxdy=v+ydvdy  

  v+ydvdy=(v1)eγ1+ep  

  1+evev+vdv=dyy  

 loge|ev+v|=loge|y|+logeC  

  loge|(ev+v)y|=logcC  

  (eσ+v)y=C=A  

 (xey+xy)y=A,

 

The General solution

(IV)  (ysinx)dx+tanxdy=0,y(0)=0. 

Ans:

The given diff. equation can be written as

dxdy+(cotx)y=cosx

This is linear differential equation.

I.F. =ecotxdy=elogsinx=sinx

The solution is:

  ysinx=sinxcosxdy+C 

 =12sin2xdy+Cysinx 

 =14cos2x+C 

It is given that , when

  c14=0 or c=14 

 ysinx=14(1cos2x)=12sin2x 

 2y=sinx 

which is the required solution.


LONG ANSWER TYPE QUESTIONS (6 MARKS EACH)

17. Solve the following differential equations:

(I) (xdyydx)ysin(yx)=(ydx+xdy)xcos(yx)

Ans:

Given Differential equation can be written as

     

  (xdyydx)ysin(yx)=(ydx+xdy)xcos(yx)  

 xysin(yx)dyy2sin(yx)dx  

 =yxcos(yx)dx+x2cos(yx)dy 

  xysin(yx)dydxy2sin(yx)  

  =xycos(yx)+x2cos(yx)dydx  

  dydx=y2sin(y/x)+xycos(y/x)xysin(y/x)x2cos(y/x)

Put (yx)=v to get y=vx and dydx=v+xdydx

v+xdvdx=v2sinv+vcosvvsinvcosv

or xdvdx=2vcosvvsinvcosv

or cosvvsinvvcosvdv=2dxx

or log|vcosv|+logx2

=logC

or x2vcosv=C or xycos(yx)=C

(II) 

  3extanydx+(1ex)sec2ydy=0   

    

Given that y=π4 , when x=1 

Ans:

The given differential equation is

3extanydx+(1ex)sec2ydy=0

3ex(1ex)dx=sec2ytanydy

On Integrating, we get

3ex(1ex)dx=sec2ytanydy

3log|1ex|=logltany+c

By putting 

y=π4 , and x=1 

(1e)3tany=(1ex)3

which is the required solution of the given differential equation.

(III) dydx+ycotx=2x+x2cotx Given that y(0)=0

Ans:

dydx+ycotx=2x+x2cotx

Let P=cotx,Q=2x+x2cotx

I.F =epdx=ecotxdx=elog(sinx)=sinx

Sol is

y(I.F)=(Qx.F)dx+C

ysinx=(2x+x2cotx)sindx+c

=(2x+x2cotx)dx+c

=2xsinxdx+x2cosxdx+c

=2[x(cosx)(1)(sinx)]+[x2sinx2x(cosx)+2c(sinx)] 

=2xcosx+2sinx+x2sinxysinx 

=x2sinx+c

Then Y (0) =0

Y=x2

This is the Required General solution for the given differential Equation.


Significance of Important Questions for Class 12 Maths Chapter 9 Differential Equations

Apart from the exercises given in the NCERT textbook, these important questions will act as the perfect guide to learning how to use the concepts of differential equations and calculus to solve.


Students will study the syllabus of this chapter and will learn the concepts, fundamental principles and formulas of differential equations and will proceed to complete the syllabus accordingly. To test their knowledge and mathematical skills, they will need a vivid platform. This platform is provided with these important questions. They can solve and compare their answers to the solutions provided and find out where they need to study more.


Benefits of Important Questions for Class 12 Maths Chapter 9 Differential Equations

  • Use these important questions as an evaluation tool for your preparation.

  • Learn to efficiently use time and solve these questions.

  • Resolve doubts faster by using the solutions provided.

  • Focus on the stepwise answering formats and score more.


Conclusion

Practicing important questions from Chapter 9, Differential Equations, is essential for scoring well in your Class 12 Maths exams. These questions cover all the key concepts and problem-solving techniques you need to master. With consistent practice and understanding, you’ll be well-prepared to answer any question in this chapter. Download the free PDF, stay focused, and excel in your exams!


Important Study Materials for Class 12 Maths Chapter 9  Differential Equations



Download CBSE Class 12 Maths Important Questions 2024-25 PDF

Also, check CBSE Class 12 Maths Important Questions for other chapters:



Important Related Links for CBSE Class 12 Maths

WhatsApp Banner

FAQs on CBSE Class 12 Maths Important Questions - Chapter 9 Differential Equations

1. What are differential equations, and why are they important in Class 12 Maths?

Differential equations are mathematical equations that involve derivatives, representing rates of change. They are crucial for understanding real-world phenomena in physics, engineering, and economics.

2. How can I prepare effectively for Chapter 9 in Class 12 Maths through these Important Questions?

Start by understanding the concepts from the NCERT textbook. Then, practise important questions, focus on solving different types of problems, and review previous year question papers.

3. Are these Class 12 Maths Chapter 9 Differential Equations useful for competitive exams?

Yes, practising these questions strengthens your basics, which are often tested in entrance exams like JEE and other competitive tests.

4. Do these Important Questions on Class 12 Maths Chapter 9 Differential Equations include solutions?

The free PDF includes step-by-step solutions for better understanding and self-assessment.

5. How much weightage does Chapter 9 hold in the CBSE Class 12 Maths exam?

Typically, questions from this chapter carry significant weightage, often included in the long-answer section. It’s important to prepare thoroughly.

6. What are the key methods to solve Important Questions on Class 12 Maths Chapter 9 Differential Equations?

The key methods include separation of variables, integrating factors, and homogeneous equations. Mastering these techniques is crucial for solving different types of problems.

7. How can I identify which method to use for a given differential equation?

Analyzing the form of the equation helps determine the method. For instance, if variables can be separated, use the separation of variables method. If the equation is linear, apply the integrating factor method.

8. Are real-life applications of differential equations included in the class 12 Maths Chapter 9  Differential Equations syllabus?

Yes, the chapter includes real-life applications such as population growth, radioactive decay, and cooling laws, which help in understanding the practical use of differential equations.

9. Can I expect direct questions from NCERT exercises in the board exam?

Yes, CBSE often includes direct or slightly modified questions from NCERT exercises, making it essential to practice them thoroughly.

10. How do I approach solving long-answer questions from class 12 Maths Chapter 9  Differential Equations?

Break the problem into smaller steps. Identify the type of equation, choose the appropriate method, and solve step-by-step. Always include explanations for better clarity.