Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations

ffImage
banner

NCERT Maths Chapter 9 Differential Equations Class 12 Solutions - Free PDF Download

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations explores the fundamental concepts, formation, and solutions of differential equations, which are equations involving derivatives of functions. Differential equations are equations that involve derivatives of a function. This chapter introduces students to the concepts of order and degree of a differential equation, the formation of differential equations, and methods of solving them.

toc-symbolTable of Content
toggle-arrow


Whether you are doing your homework or preparing for exams, these solutions are designed to align with the CBSE marking scheme and guidelines, ensuring you grasp CBSE Class 12 Maths Syllabus thoroughly and perform well in your exams.


Glance on Maths Chapter 9 Class 12 - Differential Equations

  • Chapter 9 of class 12 differential equations NCERT solutions Maths involves an unknown function and its derivatives.

  • An equation involving derivatives of the dependent variable to independent variables (variables) is known as a differential equation.

  • The order of a differential equation is the order of the highest-order derivative occurring in the differential equation.

  • The degree of a differential equation is defined if it is a polynomial equation in its derivatives.

  • A function that satisfies the given differential equation is called its solution. The solution which contains as many arbitrary constants as the order of the differential equation is called a general solution and the solution free from arbitrary constants is called a particular solution

  • To form a differential equation from a given function we differentiate the function successively as many times as the number of arbitrary constants in the given function and then eliminate the arbitrary constants.

  • This article contains chapter notes, important questions, exemplar solutions, exercises, and video links for Chapter 9 -  Differential Equations, which you can download as PDFs.

  • There are five exercises (98 fully solved questions) in class 12th maths chapter 9  Differential Equations.

Access Exercise wise NCERT Solutions for Chapter 9 Maths Class 12

Courses
Competitive Exams after 12th Science
More Free Study Material for Differential Equations
icons
Revision notes
icons
Important questions
icons
Ncert books

Exercises Under NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations

The chapter is divided into five exercises and one miscellaneous exercise. Here is a brief summary of each exercise:


  • Exercise 9.1: This exercise asks students to verify whether a given function is a solution of a given differential equation. A general solution is the one where the independent arbitrary constants of the equation are equal to the order of the equation.  So for an equation d2y/dx2 + y = 0, its general solution would be given as y = K Cos x + C sin x,  since it has 2 arbitrary constants K and C which are equal to the order of the equation that is 2. To find the particular solution of a differential equation, the arbitrary constants need to be given particular values. So, in the above example, above if we replace K = C = 1, we get the solution y = cos x + sin x which is termed as the particular solution of the differential equation.

  • Exercise 9.2: This exercise asks students to find the order and degree of given differential equations. In this, you would learn how to formulate differential equations given “n” arbitrary constants and differentiate the equation n times over to get the n + 1 equations. When you eliminate the arbitrary constants from these n + 1 equations, you will get the required differential equation. You would use this method to derive a differential equation that represents a family of curves.

  • Exercise 9.3: This exercise asks students to solve differential equations of the first order and first degree.

  • Exercise 9.4: This exercise asks students to solve differential equations of the first order and higher degree.

  • Exercise 9.5: This exercise asks students to solve differential equations of second order and higher degree.


Overall, this chapter is essential for students who want to pursue higher education in Mathematics and Physics. It provides a solid foundation for students to understand differential equations and their applications in real-world problems.


Access NCERT Solutions for Class 12 Maths Chapter 9 – Differential Equations

Exercise 9.1

1. Determine order and degree (if defined) of differential equation d4ydx4+sin(   )=0.

Ans: Rewrite the equation d4ydx4+sin(   )=0. as:

    +sin(y)=0 

The highest order between the two terms is of      which is four.

The differential equation contains a trigonometric derivative term and is not completely polynomial in its derivative, thus degree is not defined.


2. Determine order and degree (if defined) of differential equation  +5y=0.

Ans: The given differential equation is  +5y=0.

The highest order term is  , thus the order is one.

As the derivative is of completely polynomial nature is and highest power of derivative is of   which is one. Thus degree is one.


3. Determine order and degree (if defined) of differential equation (dsdt)4+3sd2sdt2=0.

Ans: The given differential equation is (dsdt)4+3sd2sdt2=0.

The highest order term is d2sdt2, thus the order is two.

As the derivative is of completely polynomial nature is and highest power of derivative termd2sdt2 which is one. Thus the degree is one.


4. Determine order and degree (if defined) of differential equation (d2ydx2)2+cos(dydx)=0.

Ans: The given differential equation is (d2ydx2)2+cos(dydx)=0.

The highest order term is d2ydx2, thus the order is two.

The differential equation contains a trigonometric derivative term and is not completely polynomial in its derivative, thus degree is not defined.


5. Determine order and degree (if defined) of differential equation (d2ydx2)-cos3x+sin3x=0.

Ans: The given differential equation is (d2ydx2)2-cos3x+sin3x=0.

The highest order term is d2ydx2, thus the order is two.

As the derivative is of completely polynomial nature is and highest power of derivative term d2ydx2 which is one. Thus degree is one.


6. Determine order and degree (if defined) of differential equation (   )2+(  )3+( )4+y5=0.

Ans: The given differential equation is (   )2+(  )3+( )4+y5=0.

The highest order term is (y)2, thus the order is three.

The differential equation is of the polynomial form and the power of highest order term     is two, thus the degree is two.


7. Determine order and degree (if defined) of differential equation    +2y   +y  =0.

Ans: The given differential equation is    +2y   +y  =0.

The highest order derivative in the differential equation is y. Thus its order is three.

The differential equation is polynomial with the highest order term y having a degree one. Thus the degree is one.


8. Determine order and degree (if defined) of differential equation  +y=e  .

Ans: The given differential equation is  +y=e  . Therefore:

 +y-e  =0 

The highest order derivative in the differential equation is  . Thus its order is one.

The given equation is of polynomial form with the highest order term   with degree one. Thus the degree is one.


9. Determine order and degree (if defined) of differential equation   +( )2+2y=0.

Ans: The given differential equation is   +( )2+2y=0.

The highest order derivative in the differential equation is   . Thus its order is two.

The given equation is of polynomial form with the highest order term    with highest degree one. Thus the degree is one.


10. Determine order and degree (if defined) of differential equation   +2y  +siny=0 .

Ans: The given differential equation is   +2y  +siny=0.

The highest order derivative in the differential equation is   . Thus its order is two.

The given equation is of polynomial form with the highest order term    with the highest degree one. Thus the degree is one.


11. Find the degree of the differential equation (d2ydx2)3+(dydx)2+sin(dydx)+1=0.

(A)3

(B)2

(C)1  

(D)not defined

Ans: The given differential equation is (d2ydx2)3+(dydx)2+sin(dydx)+1=0.

The differential equation is not polynomial in its derivative because of the term sin(dydx) thus its order is not defined.

The correct answer is (D).


12. Find the order of the differential equation 2x2d2ydx2-3dydx+y=0.

(A)2

(B)1

(C)0  

(D)not defined

Ans: The given differential equation is 2x2d2ydx2-3dydx+y=0.

The highest order term of the equation is d2ydx2, thus the order is two.

The correct answer is (A).


Exercise 9.2

1. Verify the function y=ex+1 is solution of differential equation   -y=0 .

Ans: The given function is y=ex+1 .

Take its derivative:

dydx=ddx(ex+1) 

y=ex       ……(1)

Take the derivative of the above equation:

ddx(y)=ddx(ex) 

y=ex 

Using result from equation (1):

yy=0 

Thus the given function is solution of differential equation   -y  =0.


 2. Verify the function y=x2+2x+C is solution of differential equation  -2x-2=0 .

Ans: The given function is y=x2+2x+C .

Take its derivative:

dydx=ddx(x2+2x+C) 

y=2x+2

y2x2=0 

Thus the given function is solution of differential equation  -2x-2=0.


3. Verify the function y=cos x +C is solution of differential equation  +sin x =0 .

Ans: The given function is y=cos x + C .

Take its derivative:

dydx=ddx(cosx+C) 

y=sinx

y+sinx=0 

Thus the given function is solution of differential equation  + sin x = 0.


4. Verify the function y=1+x2 is solution of differential equation  =xy1+x2 .

Ans: The given function is y = 1+x2 .

Take its derivative:

dydx=ddx(1+x2) 

y=121+x2×ddx(1+x2)

y=221+x2 

y=11+x2 

Multiply numerator and denominator by 1+x2:

y=11+x2×1+x21+x2

Substitute y  = 1+x2 

y=xy1+x2 

Thus the given function is solution of differential equation  =xy1+x2.


5. Verify the function y=Ax is solution of differential equation xy  =y(x0) .

Ans: The given function is y = Ax .

Take its derivative:

dydx=ddx(Ax) 

y=A

Multiply by x on both side:

xy=Ax 

Substitute y = Ax:

xy=y 

Thus the given function is solution of differential equation xy=y(x0).


6. Verify the function y=xsin x is solution of differential equation xy  =y+xx2-y2(x0andx>yorx<y) .

Ans: The given function is y = xsin x .

Take its derivative:

dydx=ddx(xsinx) 

y=sinxddx(x)+xddx(sinx)

y=sinx+xcosx 

Multiply by x on both side:

xy=x(sinx+xcosx) 

xy=xsinx+x2cosx 

Substitute y = xsin x:

xy=y+x2cosx 

Use sin x = yx and substitute cos x:

xy=y+x21sin2x 

xy=y+x21(yx)2 

xy=y+xy2x2 

Thus the given function is solution of differential equation xy  = y + xy2-x2.


7. Verify the function xy=log y + C is solution of differential equation  =y21-xy(xy1) .

Ans: The given function is xy = log y + C .

Take derivative on both side:

ddx(xy)=ddx(logy) 

yddx(x)+xdydx=1ydydx

y+xy=1yy 

y2+xyy=y 

Shift the   terms on one side and take it common. 

(xy1)y=y2 

y=y21xy 

Thus the given function is solution of differential equation  = y21-xy.


8. Verify the function y-cosy=x is solution of differential equation (ysin y + cos y + x) = 1 .

Ans: The given function is y - cos y = x .

Take derivative on both side:

dydxddx(cosy)=ddx(x) 

y+ysiny=1

y(1+siny)=1 

y=11+siny 

Multiply by (ysin y + cos y + x) on both side:

(ysin y + cos y + x)y=(ysin y + cos y + x)1+siny 

Substitute y=cosy+x in the numerator:

(ysin y + cos y + x)y=(ysin y + y)1+siny 

(ysin y + cos y + x)y=y(sin y + 1)1+siny 

(ysin y + cos y + x)y=y 

Thus the given function is solution of differential equation(ysin y + cos y + x) = y.


9. Verify the function x+y=tan1y is solution of differential equation y2 +y2+1=0 .

Ans: The given function is x + y = tan1y .

Take derivative on both side:

ddx(x+y)=ddx(tan1y) 

1+y=(11+y2)y

y[11+y21]=1 

y[1(1+y2)1+y2]=1 

y[y21+y2]=1 

y2y=1+y2 

y2y+y2+1=0 

Thus the given function is solution of differential equation y2y+y2+1=0.


10. Verify the function y=a2-x2x(-a,a) is solution of differential equation x+ydydx=0(y0) .

Ans: The given function is:

y = a2x2x(a,a) .

Take derivative on both side:

dydx=ddx(a2x2) 

dydx=12a2x2ddx(a2x2)

dydx=2x2a2x2 

dydx=xa2x2 

Substitute y = a2 - x2 

dydx=xy 

x+ydydx=0 

Thus the given function is solution of differential equation:

x+ydydx=0(y0).


11. Find the numbers of arbitrary constants in the general solution of a differential equation of fourth order.

(A)0

(B)2

(C)3  

(D)4 

Ans: The number of arbitrary constants in the general solution of a differential equation is equal to its order. As the given differential equation is of fourth order, thus it has four arbitrary constants in its solution.

The correct answer is (D).


12. Find the numbers of arbitrary constants in the particular solution of a differential equation of third order.

(A)3

(B)2

(C)1  

(D)0 

Ans: The particular solution of any differential equation does not have any arbitrary constants. Thus it has zero constants in its solution.

The correct answer is (D).


Exercise 9.3

1. Find the general solution for dydx=1- cos x1+ cos x .

Ans: The given differential equation is dydx=1- cos x1+ cos x.

Use trigonometric half –angle identities to simplify:
dydx=1cosx1+cosx 

dydx=2sin2x22cos2x2 

dydx=tan2x2 

dydx=sec2x21 

Separate the differentials and integrate:

dy=(sec2x21)dx 

y=sec2x2dxdx 

y=2tanx2x+C 

Thus the general solution of given differential equation is y = 2tanx2 - x + C.


2. Find the general solution for dydx=4 - y2(-2  y  2) .

Ans: The given differential equation is dydx=4 - y2(-2  y  2).

Simplify the expression:

dydx=4y2 

dy4y2=dx 

Use standard integration:

dy4y2=dx 

sin1y2=x+C 

y2=sin(x+C) 

y=2sin(x+C) 

Thus the general solution of given differential equation is y = 2 sin(x + C).


3. Find the general solution for dydx+ y =1(y1) .

Ans: The given differential equation is dydx+ y =1(y1).

Simplify the expression:

dydx+y=1 

dydx=1y 

dy1y=dx 

Use standard integration:

dy1y=dx 

log(1y)=x+C 

log(1y)=(x+C) 

1y=e(x+C) 

y=1Aex(A=eC) 

Thus the general solution of given differential equation is y=1- Ae-x.


4. Find the general solution for sec2xtanydx+sec2ytanxdy=0.

Ans: The given differential equation is:

sec2xtanydx+sec2ytanxdy=0.

Divide both side by tan x tan y:

sec2xtanydx+sec2ytanxdytanxtany=0 

sec2xtanxdx+sec2ytanydy=0 

Integrate both side:

sec2xtanxdx+sec2ytanydy=0 

sec2ytanydy=sec2xtanxdx       ……(1)

Use a substitution method for integration. Substitute tan x = u:

For integral on RHS:

tanx=u 

sec2xdx=du 

sec2xtanxdx=duu 

sec2xtanxdx=logu 

sec2xtanxdx=log(tanx) 

Thus evaluating result form (1):

log(tany)=log(tanx)+log(C) 

log(tany)=log(Ctanx) 

tanxtany=C 

Thus the general solution of given differential equation is tan x tan y = C.


5. Find the general solution for (ex+e-x)dy-(ex-e-x)dx=0 .

Ans: The given differential equation is:

(ex+ex)dy(exex)dx=0.

Simplify the expression:

dy=[exexex+ex]dx 

Integrate both side:

dy=[exexex+ex]dx ……(1)

Use a substitution method for integration. Substitute ex+e-x=t:

For integral on RHS:

ex+ex=t 

(exex)dx=dt 

[exexex+ex]dx=dtt s

[exexex+ex]dx=lnt+C 

[exexex+ex]dx=log(ex+ex)+C 

Thus evaluating result form (1):

y=log(ex+ex)+C 

Thus the general solution of given differential equation is y=log(ex+e-x)+C.


6. Find the general solution for dydx=(1+x2)(1+y2).

Ans: The given differential equation is:

dydx=(1+x2)(1+y2).

Simplify the expression:

dy1+y2=(1+x2)dx 

Integrate both side:

dy1+y2=(1+x2)dx

Use standard integration:

tan1y=dx+x2dx 

tan1y=x+x33+C 

Thus the general solution of given differential equation is tan-1y=x+x33+C.


7. Find the general solution for ylog y dx-xdy=0.

Ans: The given differential equation is:

ylogydxxdy=0.

Simplify the expression:

ylogydx=xdy 

dxx=dyylogy 

Integrate both side:

dyylogy=dxx ……(1)

Use substitution method for integration on LHS. Substitute log y=t:

logy=t 

1ydy=dt 

dyylogy=dtt 

dyylogy=logt 

dyylogy=log(logy) 

Evaluating expression (1):

log(logy)=logx+logC 

log(logy)=logCx 

logy=Cx 

y=eCx 

Thus the general solution of given differential equation is y=eCx.


8. Find the general solution for x5dydx=-y5.

Ans: The given differential equation is:

x5dydx=y5.

Simplify the expression:

dyy5=dxx5 

Integrate both side:

dyy5=dxx5 

y5dy=x5dx 

y5+15+1=x5+15+1+C 

y44=x44+C 

x4+y4=4C 

x4+y4=A(A=4C) 

Thus the general solution of given differential equation is x-4+y-4=A.


9. Find the general solution for dydx=sin-1x.

Ans: The given differential equation is:

dydx=sin1x.

Simplify the expression:

dy=sin1xdx 

Integrate both side:

dy=sin1xdx 

y=1×sin1xdx 

Use product rule of integration:

sin1xdx=sin1xdx(11x2dx)dx 

sin1xdx=xsin1xx1x2dx 

Substitute 1-x2=t2 

1x2=t2 

2xdx=2tdt 

xdx=tdt 

Evaluating the integral:

2x2+x(x+1)(x2+1)=Ax+1+Bx+Cx2+1 

sin1xdx=xsin1x+tdtt2 

sin1xdx=xsin1x+t+C 

sin1xdx=xsin1x+1x2+C 

y=xsin1x+1x2+C 

Thus the general solution of given differential equation is y=xsin-1x+1-x2+C,


10. Find the general solution for extanydx+(1-ex)sec2ydy=0.

Ans: The given differential equation is:

extanydx+(1ex)sec2ydy=0.

Simplify the expression:

(1ex)sec2ydy=extanydx 

sec2ytanydy=ex(1ex)dx 

Integrate both side:

sec2ytanydy=ex(1ex)dx ……(1)

Substitute tan y=u 

tany=u 

sec2y=du 

Evaluating the LHS integral of (1):

sec2ytanydy=duu 

sec2ytanydy=logu 

sec2ytanydy=log(tany) 

Substitute 1-ex=v 

1ex=v 

exdx=dv 

Evaluating the RHS integral of (1):

ex(1ex)dx=dvv 

ex(1ex)dx=logv 

ex(1ex)dx=log(1ex) 

Therefore the integral (1) will be:

log(tany)=log(1ex)+logC 

log(tany)=logC(1ex) 

tany=C(1ex) 

Thus the general solution of given differential equation is tany=C(1-ex),


11. Find the particular solution of (x3+x2+x+1)dydx=2x2+x;y=1,x=0 to satisfy the given condition.

Ans: The given differential equation is:

(x3+x2+x+1)dydx=2x2+x;y=1,x=0.

Simplify the expression:

dydx=2x2+x(x3+x2+x+1) 

dydx=2x2+x(x3+x+x2+1) 

dydx=2x2+x(x+1)(x2+1) 

dy=2x2+x(x+1)(x2+1)dx 

Integrate both side:

dy=2x2+x(x+1)(x2+1)dx ……(1)

Use partial fraction method to simplify the RHS:


2x2+x(x+1)(x2+1)=Ax+1+Bx+Cx2+1

2x2+x=A(x2+1)+(Bx+C)(x+1) 

2x2+x=(A+B)x2+(B+C)x+(A+C) 

By comparing coefficients:

A+B=2 

B+C=1 

A+C=0 

Solving this we get:

2x2+x(x+1)(x2+1)=(12)x+1+(32)x+(12)x2+1 

2x2+x(x+1)(x2+1)=12(1x+1+3x1x2+1) 

Rewriting the  integral(1):

y=12(1x+1+3x1x2+1)dx 

y=121x+1dx+123x1x2+1dx 

y=12log(x+1)+32xx2+1dx121x2+1dx 

y=12log(x+1)+342xx2+1dx12tan1x 

y=12log(x+1)+34log(x2+1)12tan1x+C 

For y=1 when x=0

1=12log(0+1)+34log(0+1)12tan10+C 

C=1 

Thus the required particular solution is :

y=12log(x+1)+34log(x2+1)12tan1x+1.


12. Find the particular solution of x(x2-1)dydx=1; y=0 when x=2 to satisfy the given condition.

Ans: The given differential equation is:

x(x21)dydx=1; y=0 when x=2 

Simplify the expression:

x(x21)dydx=1 

dy=dxx(x21) 

dy=dxx(x1)(x+1) 

Integrate both side:

dy=dxx(x1)(x+1) ……(1)

Use partial fraction method to simplify the RHS:


1x(x1)(x+1)=Ax+Bx1+Cx+1

1=A(x21)+Bx(x+1)+Cx(x1) 

1=(A+B+C)x2+(BC)xA 

By comparing coefficients:

A+B+C=0 

BC=0 

A=1 

Solving this we get:

1x(x1)(x+1)=(1)x+(12)x1+(12)x+1 

1x(x1)(x+1)=1x+12(1x1+1x+1) 

Rewriting the  integral(1):

y=(1x+12(1x1+1x+1))dx 

y=1xdx+121x1dx+121x+1dx 

y=logx+12log(x1)+12log(x+1)+logC 

y=22logx+12log(x1)+12log(x+1)+22logC 

y=12(logx2+log(x1)+log(x+1)+logC2) 

y=12log[C2(x21)x2] 

For y=0 when x=2

0=12log[C2(221)22] 

0=log[3C24] 

3C24=1 

C2=43 

Thus the required particular solution is :

y=12log[4(x21)3x2].


13. Find the particular solution of cos(dydx)=a(aR); y=1 when x=0 to satisfy the given condition.

Ans: The given differential equation is:

cos(dydx)=a(aR); y=1 when x=0

Simplify the expression:

cos(dydx)=a 

dydx=cos1a 

dy=cos1adx 

Integrate both side:

dy=cos1adx 

y=cos1adx 

y=xcos1a+C 

For y=1 when x=0

1=0cos1a+C 

C=1 

Thus the required particular solution is:

y=xcos1a+1.

y1x=cos1a

cos(y1x)=a


14. Find the particular solution of dydx=ytanx; y=1 when x=0 to satisfy the given condition.

Ans: The given differential equation is:

dydx=ytanx; y=1 when x=0

Simplify the expression:

dydx=ytanx

dyy=tanxdx 

Integrate both side:

dyy=tanxdx 

logy=log(secx)+logC 

logy=log(Csecx) 

y=Csecx 

For y=1 when x=0

1=Csec0 

C=1 

Thus the required particular solution is :

y=secx


15. Find the equation of a curve passing through the point (0, 0) and whose differential equation is  =exsin x.

Ans: The given differential equation is:

y=exsinx

The curve passes through (0,0).

Simplify the expression:

dydx=exsinx

dy=exsinxdx 

Integrate both side:

dy=exsinxdx 

Use product rules for integration of RHS. Let:

I=exsinxdx 

I=sinxexdx(cosxexdx)dx 

I=exsinxexcosxdx 

I=exsinx(cosxexdx+(sinxexdx)dx) 

I=exsinxexcosx(exsinx)dx 

I=exsinxexcosxI 

I=ex2(sinxcosx) 

Thus integral will be:

y=ex2(sinxcosx)+C 

Thus as the curve passes through (0,0) 

0=e02(sin0cos0)+C

0=12(01)+C 

C=12 

Thus the equation of the curve will be:

y=ex2(sinxcosx)+12 

y=ex2(sinxcosx+1) 


16. For the differential equation xydydx=(x+2)(y+2) find the solution curve passing through the point (1,-1).

Ans: The given differential equation is:

xydydx=(x+2)(y+2)

The curve passes through (1,1).

Simplify the expression:

(yy+2)dy=(x+2)xdx

(12y+2)dy=(x+2)xdx 

Integrate both side:

(12y+2)dy=(x+2)xdx 

dy21y+2dy=xxdx+2xdx 

y2log(y+2)=x+2logx+C 

yx=2log(y+2)+2logx+C 

⇒⇒yx=2log[x(y+2)]+C 

yx=log[x2(y+2)2]+C 

Thus as the curve passes through (1,-1) 

11=log[(1)2(1+2)2]+C

2=log1+C 

C=2 

Thus the equation of the curve will be:

yx=log[x2(y+2)2]2 

yx+2=log(x2(y+2)2) 


17. Find the equation of a curve passing through the point (0,-2) given that at any point (x,y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x -coordinate of the point.

Ans: According to , the equation is given by:

ydydx=x 

The curve passes through (0,2).

Simplify the expression:

ydy=xdx 

Integrate both side:

ydy=xdx 

y22=x22+C 

y2x2=2C 

Thus as the curve passes through (0,-2) 

(2)202=2C

4=2C 

C=2 

Thus the equation of the curve will be:

y2x2=2(2) 

y2x2=4 .


18. At any point (x,y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point(-4,-3) . Find the equation of the curve given that it passes through (-2,1).

Ans: Let the point of contact of the tangent be (x,y).Then the slope of the segment joining point of contact and (-4,-3):

m=y+3x+4 

According to  the for the slope of tangent dydx it follows:

dydx=2m 

dydx=2(y+3x+4)

Simplify the expression:

dydx=2(y+3x+4) 

dyy+3=2x+4dx 

Integrate both side:

dyy+3=2x+4dx 

log(y+3)=2log(x+4)+logC 

log(y+3)=log(x+4)2+logC 

log(y+3)=logC(x+4)2 

y+3=C(x+4)2 

Thus as the curve passes through (-2,1) 

1+3=C(2+4)2

4=4C 

C=1 

Thus the equation of the curve will be:

y+3=(x+4)2 .


19. The volume of spherical balloons being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Ans: Let the volume of spherical balloon be V and its radius r. Let the rate of change of volume be k.

dVdt=k 

ddt(43πr3)=k 

43πddt(r3)=k 

43π(3r2)drdt=k 

4πr2drdt=k 

4πr2dr=kdt 

Integrate both side:
4πr2dr=kdt 

4πr2dr=kt+C 

43πr3=kt+C 

At initial time, t=0 and r=3:

43π33=k(0)+C 

C=36π

At t=3 the radius r=6:

43π(63)=k(3)+36π 

3k=288π36π 

k=84π 

Thus the radius-time relation can be given by:

43πr3=84πt+36π 

r3=63t+27 

r=(63t+27)13

The radius of balloon after t seconds is given by: r=(63t+27)13 .

.

20. In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs. 100doubles itself in 10 years (loge2=0.6931).

Ans: Let the principal be p, according to :

dpdt=(r100)p 

Simplify the expression:

dpp=(r100)dt 

Integrate both side:
dpp=(r100)dt 

logp=rt100+c 

p=ert100+c 

p=Aert100(A=ec) 

At t=0, p=100:

100=Aer(0)100 

A=100 

Thus the principle and rate of interest relation:

p=100ert100 

At t=10, p=2×100=200:

200=100er(10)100 

2=er10 

Take logarithm on both side:

log(er10)=log(2) 

r10=0.6931 

r=6.931 

Thus the rate of interest r=6.931 


21. In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10  years (e0.5=1.648).

Ans: Let the principal be p, according to  principle increases at the rate of 5% per year.

dpdt=(5100)p 

Simplify the expression:

dpdt=p20 

dpp=120dt 

Integrate both side:

dpp=120dt 

logp=t20+C 

p=et20+C 

p=Aet20(A=eC)
At t=0, p=1000

1000=Ae020 

A=1000 

Thus the relation of principal and time relation:

p=1000et20 

At t=10

p=1000e1020 

p=1000e0.5

p=1000×1.648 

p=1648  

Thus after 10 this year the amount will become Rs. 1648.


22. In a culture, the bacteria count is 100000 . The number is increased by 10   in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?

Ans: Let the number of bacteria be y at time t. According to :

dydty 

dydt=cy 

Here c is constant.

Simplify the expression:
dyy=cdt 

Integrate both side:
dyy=cdt 

logy=ct+D 

y=ect+D 

y=Aect(A=eD) 

At t=0, y=100000

100000=Aec(0) 

A=100000 

At t=2, y=1110(100000)=110000

y=100000ect 

110000=100000ec(2) 

e2c=1110 

2c=log(1110) 

c=12log(1110) ……(1)

For y=200000:

200000=100000ect 

ect=2 

ct=log2 

t=log2c 

Back substituting using expression (1):
t=log212log(1110) 

t=2log2log(1110) 

Thus time required for bacteria to reach 200000 is t=log212log(1110) hrs.


23. Find the general solution of the differential equation dydx=ex+y.

(A)ex+e-y=C 

(B) ex+ey=C

(C) e-x+ey=C

(D) e-x+e-y=C

Ans: The given differential equation is dydx=ex+y. Simplify the expression:

dydx=exey 

dyey=exdx 

eydy=exdx 

Integrate both side:

eydy=exdx 

ey=ex+D 

ex+ey=D 

ex+ey=C(C=D) 

Thus the general solution of given differential equation is ex+ey=C 

Thus the correct option is (A).


Exercise 9.4

1. Show that, differential equation (x2+xy)dy=(x2+y2)dx is homogenous and solves it.

Ans: Rewrite the equation in standard form:

dydx=x2+y2x2+xy 

Checking for homogeneity:

F(x,y)=x2+y2x2+xy 

F(λx,λy)=(λx)2+(λy)2(λx)2+(λx)(λy) 

F(λx,λy)=λ2(x2+y2)λ2(x2+xy) 

F(λx,λy)=x2+y2x2+xy 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=x2+(vx)2x2+x(vx) 

vdxdx+xdvdx=x2(1+v2)x2(1+v) 

v+xdvdx=1+v21+v 

xdvdx=1+v21+vv 

xdvdx=1+v2vv21+v 

xdvdx=1v1+v 

Separate the differentials:

1+v1vdv=dxx 

Integrate both side:

1+v1vdv=dxx 

2(1v)1vdv=logxlogk 

21vdv1v1vdv=logxk 

2log(1v)dv=logxk 

2log(1v)v=logxk 

v=logxk2log(1v) 

v=log(kx(1v)2) 

Back substitute v=yx:

yx=log(kx(1yx)2) 

yx=log(kx(xy)2) 

eyx=kx(xy)2

(xy)2=kxeyx  

 The solution of the given differential equation (x-y)2=kxe-yx .


2. Show that, differential equation  =x+yx is homogenous and solves it.

Ans: Rewrite the equation in standard form:

dydx=x+yx 

Checking for homogeneity:

.F(x,y)=x+yx 

F(λx,λy)=λx+λyλx 

F(λx,λy)=λ(x+y)λ(x) 

F(λx,λy)=x+yx 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=x+(vx)x 

vdxdx+xdvdx=x(1+v)x 

v+xdvdx=1+v 

xdvdx=1 

Separate the differentials:

dv=dxx 

Integrate both side:

dv=dxx 

dv=logx+logk 

v=logkx 

Back substitute v=yx:

yx=logkx 

y=xlogkx  

 The solution of the given differential equation y=x log kx 


3. Show that, differential equation (x-y)dy-(x+y)dx=0 is homogenous and solves it.

Ans: Rewrite the equation in standard form:

dydx=x+yxy 

Checking for homogeneity:

F(x,y)=x+yxy 

F(λx,λy)=λx+λyλxλy 

F(λx,λy)=λ(x+y)λ(xy) 

F(λx,λy)=x+yxy 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=x+(vx)xvx 

vdxdx+xdvdx=x(1+v)x(1v) 

v+xdvdx=1+v1v 

xdvdx=1+v1vv

xdvdx=1+vv+v21v  

xdvdx=1+v21v 

Separate the differentials:

1v1+v2dv=dxx 

Integrate both side:

1v1+v2dv=dxx 

1v1+v2dv=dxx 

11+v2dvv1+v2dv=logx+C 

tan1v122v1+v2dv=logx+C 

tan1v12log(1+v2)=logx+C 

tan1v=logx+12log(1+v2)+C 

tan1v=12logx2+12log(1+v2)+C 

tan1v=12log[x2(1+v2)]+C 

Back substitute v=yx:

tan1yx=12log[x2(1+y2x2)]+C 

tan1yx=12log(x2+y2)+C  

The solution of the given differential equation tan-1yx=12log(x2+y2)+C.


4. Show that, differential equation (x2-y2)dx+2xy dy=0 is homogenous and solves it.

Ans: Rewrite the equation in standard form:

dydx=x2y22xy 

Checking for homogeneity:

F(x,y)=x2y22xy 

F(λx,λy)=(λx)2(λy)22(λx)(λy) 

F(λx,λy)=λ2x2λ2y22λ2xy 

F(λx,λy)=λ2(x2y2)λ2(2xy) 

F(λx,λy)=x2y22xy 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=x2(vx)22x(vx) 

vdxdx+xdvdx=x2(v21)x2(2v) 

v+xdvdx=v212v 

xdvdx=v212vv

xdvdx=v212v22v  

xdvdx=1+v22v 

Separate the differentials:

2v1+v2dv=dxx 

Integrate both side:

2v1+v2dv=dxx 

log(1+v2)=logx+C 

log(1+v2)+logx=C 

log[x(1+v2)]=C

Back substitute v=yx:

log[x(1+y2x2)]=C 

(x2+y2x)=kk=eC  

x2+y2=kx 

 The solution of the given differential equation x2+y2=kx.


5. Show that, differential equation x2dydx=x2-2y2+xy is homogenous and solves it.

Ans: Rewrite the equation in standard form:

dydx=x22y2+xyx2 

Checking for homogeneity:

F(x,y)=x22y2+xyx2 

F(λx,λy)=λ2x22λ2y2+(λx)(λy)λ2x2 

F(λx,λy)=λ2(x22y2+xy)λ2(x2) 

F(λx,λy)=x22y2+xyx2 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=x22(vx)2+x(vx)x2 

vdxdx+xdvdx=x2(12v2+v)x2 

v+xdvdx=12v2+v 

xdvdx=12v2 

Separate the differentials:

112v2dv=dxx 

Integrate both side:

112v2dv=dxx 

12112v2dv=logx+C 

121(12)2v2dv=logx+C 

12(12×12)log|12+v||12v|=logx+C

122log|1+2v||12v|=logx+C 

Back substitute v=yx:s

122log|1+2(yx)||12(yx)|=logx+C 

122log|x+2y||x2y|=logx+C 

 The solution of the given differential equation 122log|x+2y||x-2y|=logx+C.


6. Show that, differential equation xdy-ydx=x2+y2dx is homogenous and solves it.

Ans: Rewrite the equation in standard form:

xdy=x2+y2dx+ydx 

dydx=x2+y2+yx 

Checking for homogeneity:

F(x,y)=x2+y2+yx 

F(λx,λy)=λ2x2+λ2y2+λyλx 

F(λx,λy)=λ2(x2+y2)+λyλx 

F(λx,λy)=λ(x2+y2+y)λ(x) 

F(λx,λy)=x2+y2+yx 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=x2+(vx)2+vxx 

vdxdx+xdvdx=x(1+v2+v)x 

v+xdvdx=1+v2+v 

xdvdx=1+v2 

Separate the differentials:

11+v2dv=dxx 

Integrate both side:

11+v2dv=dxx 

log|v+1+v2|=logx+logC 

Back substitute v=yx:s

log|yx+1+y2x2|=logCx 

log|y+y2+x2x|=logCx 

y+y2+x2=Cx2 



7. Show that, differential equation {xcos(yx)+ysin(yx)}ydx={ysin(yx)-xcos(yx)}xdy is homogenous and solves it.

Ans: Rewrite the equation in standard form:

{xcos(yx)+ysin(yx)}ydx={ysin(yx)xcos(yx)}xdy 

dydx={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}x 

Checking for homogeneity:

F(x,y)={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}x 

F(λx,λy)={λxcos(λyλx)+ysin(λyλx)}λy{λysin(λyλx)λxcos(λyλx)}λx 

F(λx,λy)=λ2{xcos(yx)+ysin(yx)}yλ2{ysin(yx)xcos(yx)}x 

F(λx,λy)={xcos(yx)+ysin(yx)}y{ysin(yx)xcos(yx)}x 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx={xcos(xvx)+vxsin(vxx)}vx{vxsin(vxx)xcos(vxx)}x 

vdxdx+xdvdx=x2{cosv+vsinv}vx2{vsinvcosv} 

v+xdvdx=vcosv+v2sinvvsinvcosv 

xdvdx=vcosv+v2sinvvsinvcosvv 

xdvdx=vcosv+v2sinvv2sinv+vcosvvsinvcosv 

xdvdx=2vcosvvsinvcosv 

Separate the differentials:

vsinvcosvvcosvdv=2dxx 

Integrate both side:

vsinvcosvvcosvdv=2dxx 

vsinvvcosvdvcosvvcosvdv=2dxx

tanvdv1vdv=2log|x|+logC 

log|secv|log|v|=logC|x|2

log|secv||v|=logC|x|2 

secv=Cvx2   

Back substitute v=yx:s

secyx=C(yx)x2 

cosyx=kxyk=1C 

The solution of the given differential equation cosyx=kxy.


8. Show that, differential equation xdydx-y+xsin(yx)=0 is homogenous and solves it.

Ans: Rewrite the equation in standard form:

xdydxy+xsin(yx)=0 

dydx=yxsin(yx)x 

Checking for homogeneity:

F(x,y)=yxsin(yx)x 

F(λx,λy)=λyλxsin(λyλx)λx 

F(λx,λy)=λ(yxsin(yx))λx 

F(λx,λy)=yxsin(yx)x 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=vxxsin(vxx)x 

vdxdx+xdvdx=x(vsinv)x 

v+xdvdx=vsinv 

xdvdx=sinv 

Separate the differentials:

1sinvdv=dxx 

Integrate both side:

cosecvdv=dxx 

log|cosecvcotv|=logx+logC

log|cosecvcotv|=logCx 

cosecvcotv=Cx

1sinvcosvsinv=Cx 

1cosv=Cxsinv   

Back substitute v=yx:

1cosyx=Cxsinyx 

x(1cosyx)=Csin(yx) 

The solution of the given differential equation x(1-cosyx)=Csin(yx).


9. Show that, differential equation ydx+xlog(yx)dy-2xdy=0 is homogenous and solves it.

Ans: Rewrite the equation in standard form:

ydx=2xdyxlog(yx)dy 

dydx=y2xxlog(yx) 

Checking for homogeneity:

F(x,y)=y2xxlog(yx) 

F(λx,λy)=λy2λxλxlog(λyλx) 

F(λx,λy)=λyλ(2xxlog(yx)) 

F(λx,λy)=y2xxlog(yx) 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=vx2xxlog(vxx) 

vdxdx+xdvdx=xvx(2log(v)) 

v+xdvdx=v2log(v) 

xdvdx=v2logvv

xdvdx=v2v+vlogv2logv 

xdvdx=vlogvv2logv  

Separate the differentials:

2logvvlogvvdv=dxx 

Integrate both side:

2logvvlogvvdv=dxx 

1+1logvv(logvv)dv=logx+logC

1v(logv1)dv+1logvv(logv1)dv=logx+logC 

1v(logv1)dv1vdv=logCx ……(1)

Solving :

1v(logv1)dv

Substitute log v-1=t:

logv1=t   

1vdv=dt   

Thus the integral will be:

1v(logv1)dv=dtt 

1v(logv1)dv=logt 

1v(logv1)dv=log(logv1) 

Using above result for solving (1):

log(logv1)logv=logCx 

loglogv1v=logCx 

logv1v=Cx 

Back substitute v=yx:

logyx1yx=Cx 

logyx1=Cx(yx) 

logyx1=Cy 

 The solution of the given differential equation logyx-1=Cy.


10. Show that, differential equation (1+exy)dx+exy(1-xy)dy=0 is homogenous and solves it.

Ans: Rewrite the equation in standard form:

(1+exy)dx=exy(1xy)dy 

dxdy=exy(1xy)(1+exy) 

Checking for homogeneity:

F(x,y)=exy(1xy)(1+exy) 

F(λx,λy)=eλxλy(1λxλy)(1+eλxλy) 

F(λx,λy)=exy(1xy)(1+exy) 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let x=vy:

d(vy)dy=evyy(1vyy)1+evyy 

vdydy+ydvdy=ev(1v)1+ev 

v+ydvdy=ev(1v)1+ev 

ydvdy=ev(1v)1+evv

ydvdy=ev+vevvvev1+ev 

ydvdy=(ev+v)1+ev  

Separate the differentials:

1+evev+vdv=dyy 

Integrate both side:

1+evev+vdv=dyy 

ev+1ev+vdv=logy+logC ……(1)

Solving the LHS integral. Substitute ev+v=t:

ev+v=t 

(ev+1)dv=dt 

Solving the expression (1):

1tdt=logCy 

log(t)=logCy

log(ev+v)=logCy 

ev+v=Cy 

Back substitute v=xy:

exy+xy=Cy 

yexy+x=C 

The solution of the given differential equation yexy+x=C.


11. For the differential equation (x+y)dy+(x-y)dx=0.Find the particular solution for the condition y=1 when x=1.

Ans: Given differential equation is:

(x+y)dy+(xy)dx=0

dydx=xyx+y 

Checking for homogeneity:

F(x,y)=xyx+y 

F(λx,λy)=λxλyλx+λy 

F(λx,λy)=λ(xy)λ(x+y) 

F(λx,λy)=xyx+y 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=x(vx)x+(vx) 

vdxdx+xdvdx=x(v1)x(v+1) 

v+xdvdx=v1v+1 

xdvdx=v1v+1v 

xdvdx=v1v2vv+1 

xdvdx=1+v2v+1 

Separate the differentials:

v+11+v2dv=dxx 

Integrate both side:

v+11+v2dv=dxx 

v1+v2dv+11+v2dv=logx+k 

12log(1+v2)+tan1v+logx=k 

12log[x(1+v2)]+tan1v=k 

Back substitute v=yx:

12log[x(1+y2x2)]+tan1yx=k 

12log[x2+y2x]+tan1yx=k  

 Now y=1 and x=1:

12log[12+121]+tan111=k  

k=12log2+π4 

The required particular solution:

12log[x2+y2x]+tan1yx=12log2+π4 


12. For the differential equation x2dy+(xy+y2)dx=0.Find the particular solution for the condition y=1 when x=1.

Ans: Given differential equation is:

x2dy+(xy+y2)dx=0

dydx=xy+y2x2 

Checking for homogeneity:

F(x,y)=xy+y2x2 

F(λx,λy)=(λx)(λy)+λ2y2λ2x2 

F(λx,λy)=λ2(xy+y2)λ2x2 

F(λx,λy)=xy+y2x2 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=x(vx)+(vx)2x2 

vdxdx+xdvdx=vx2+v2x2x2 

v+xdvdx=x2(v+v2)x2 

v+xdvdx=vv2 

xdvdx=v22v 

Separate the differentials:

1v2+2vdv=dxx 

Integrate both side:

1v2+2vdv=dxx 

12v+2vv(v+2)dv=logx+logC 

12v+2v(v+2)dv12vv(v+2)dv=logx+logC 

121vdv121v+2dv=logx+logC 

12logv12log(v+2)=logCx 

12logvv+2=logCx 

vv+2=(Cx)2 

vv+2=C2x2 

Back substitute v=yx:

yxyx+2=C2x2 

x2yy+2x=C2  

 Now y=1 and x=1:

12(1)1+2(1)=C2  

C2=13 

The required particular solution:

x2yy+2x=13 

y+2x=3x2y 


13. For the differential equation [xsin2(xy)-y]dx+xdy=0.Find the particular solution for the condition y= π 4 when x=1.

Ans: Given differential equation is:

[xsin2(xy)y]dx+xdy=0

dydx=[xsin2(xy)y]x 

Checking for homogeneity:

F(x,y)=xsin2(xy)yx 

F(λx,λy)=λxsin2(λxλy)λyλx 

F(λx,λy)=λ(xsin2(yx)y)λx 

F(λx,λy)=xsin2(yx)yx 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=xsin2(vxx)vxx 

vdxdx+xdvdx=xsin2(v)+vxx 

v+xdvdx=sin2v+v 

xdvdx=sin2v 

Separate the differentials:

cosec2vdv=dxx 

Integrate both side:

cosec2vdv=dxx 

cotv=logxlogC 

cotv=logCx 

Back substitute v=yx:

cotyx=logCx 

 Now y= π 4 and x=1:

cotπ41=logC(1)  

logC=cotπ4 

logC=1 

C=e 

The required particular solution:

cotyx=log|ex| 


14. For the differential equation dydx-yx+cosec(yx)=0.Find the particular solution for the condition y=0 when x=1.

Ans: Given differential equation is:

dydxyx+cosec(yx)=0

dydx=yxcosec(yx) 

Checking for homogeneity:

F(x,y)=yxcosec(yx) 

F(λx,λy)=λyλxcosec(λyλx) 

F(λx,λy)=yxcosec(yx) 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=vcosec(v) 

vdxdx+xdvdx=vcosec(v) 

v+xdvdx=vcosec(v) 

xdvdx=cosec(v) 

Separate the differentials:

sinvdv=dxx 

Integrate both side:

sinvdv=dxx 

cosv=log|x|logC 

cosv=log|Cx| 

Back substitute v=yx:

cosyx=log|Cx| 

 Now y=0 and x=1:

cos01=log|C1|  

logC=1 

C=e 

The required particular solution:

cosyx=log|ex|.


15. For the differential equation 2xy+y2-2x2dydx=0.Find the particular solution for the condition y=2 when x=1.

Ans: Given differential equation is:

2xy+y22x2dydx=0

dydx=2xy+y22x2 

Checking for homogeneity:

F(x,y)=2xy+y22x2 

F(λx,λy)=2(λx)(λy)+λ2y22λ2x2 

F(λx,λy)=2xy+y22x2 

F(x,y)=F(λx,λy) 

Thus it is an homogenous equation.

Let y=vx:

d(vx)dx=2x(vx)+(vx)22x2 

vdxdx+xdvdx=2v+v22 

v+xdvdx=v+v22 

xdvdx=v22 

Separate the differentials:

dvv2=12(dxx) 

Integrate both side:

2dvv2=(dxx) 

v2+12+1=log|x|+C 

2v=log|x|+C 

Back substitute v=yx:

2xy=log|x|+C 

 Now y=2 and x=1:

2(1)2=log|1|+C  

C=1 

The required particular solution:

2xy=log|x|1.

y=2x1log|x|(x0,e) 


16. What substitution should be used for solving homogeneous differential equation dxdy=h(xy).

A.y=vx 

B. v=yx

C. x=vy

D. x=v

Ans: The required substitution will be: 

xy=v 

x=vy 

The correct answer is (C).


17. Which of the following equation is homogeneous:

  1. (4x+6y+5)dy-(3y+2x+4)dx=0 

  2. (xy)dx-(x3+y3)dy=0 

  3. (x3+2y2)dx+2xydy=0 

  4. y2dx+(x2-xy-y2)dy=0 

Ans: For option (A):

F(x,y)=3y+2x+44x+6y+5

F(λx,λy)=3λy+2λx+44λx+6λy+5 

F(λx,λy)F(x,y)  


For option (B):

F(x,y)=xyx3+y3

F(λx,λy)=(λx)(λy)(λx)3+(λy)3 

F(λx,λy)=xyλ(x+y) 

F(λx,λy)F(x,y)  


For option (C):

F(x,y)=x3+2y22xy

F(λx,λy)=λ3x3+2λ2y22(λx)(λy) 

F(λx,λy)=λx3+2y22xy 

F(λx,λy)F(x,y)  


For option (D):

F(x,y)=y2x2xyy2

F(λx,λy)=λ2y2λ2x2(λx)(λy)λ2y2 

F(λx,λy)=y2x2xyy2 

F(λx,λy)=F(x,y)  

Thus the correct answer is option (D).


Exercise 9.5

1. Find the general solution for the differential equation dydx+2y=sinx.

Ans: The given differential equation is:

dydx+2y=sinx

It is a linear differential equation of the form dydx+py=Q, with:

p=2 

Q=sinx 

Calculate the integrating factor:

I.F=epdx 

I.F=e2dx 

I.F=e2x 

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

ye2x=sinx(e2x)dx+C 

ye2x=I+C(I=sinx(e2x)dx) ……(1)

I=sinx(e2x)dx 

I=(sinx)e2xdx((sinx)e2xdx)dx 

I=e2x2sinx(cosx(e2x2))dx 

I=e2x2sinx12[cosxe2xdx((cosx)(e2xdx))dx] 

I=e2x2sinx12[e2x2cosx+12e2x(sinx)dx] 

I=e2x2sinx12[e2x2cosx+12I] 

I=e2x2sinxe2x4cosx14I 

54I=e2x2sinxe2x4cosx 

I=2e2x5sinxe2x5cosx 

I=e2x5[2sinxcosx] 

Back substituting I in expression (1):

ye2x=e2x5[2sinxcosx]+C 

y=15(2sinxcosx)+Ce2x 

The general solution for given differential equation is y=15(2sinx-cosx)+Ce-2x.


2. Find the general solution for the differential equation dydx+3y=e-2x.

Ans: The given differential equation is:

dydx+3y=e2x

It is a linear differential equation of the form dydx+py=Q, with:

p=3 

Q=e2x 

Calculate the integrating factor:

I.F=epdx 

I.F=e3dx 

I.F=e3x 

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

ye3x=e2x(e3x)dx+C 

ye3x=e2x+3xdx+C 

ye3x=exdx+C 

ye3x=ex+C 

y=e2x+Ce3x 

The general solution for given differential equation is y=e-2x+Ce-3x.


3. Find the general solution for the differential equation dydx+yx=x2.

Ans: The given differential equation is:

dydx+yx=x2

It is a linear differential equation of the form dydx+py=Q, with:

p=1x 

Q=x2 

Calculate the integrating factor:

I.F=epdx 

I.F=e1xdx 

I.F=elogx

I.F=x  

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

yx=x2(x)dx+C 

xy=x3dx+C 

xy=x3+13+1+C 

xy=x44+C 

The general solution for given differential equation is xy=x44+C.


4. Find the general solution for the differential equation dydx+(secx)y=tanx(0x π 2).

Ans: The given differential equation is:

dydx+(secx)y=tanx

It is a linear differential equation of the form dydx+py=Q, with:

p=secx 

Q=tanx 

Calculate the integrating factor:

I.F=epdx 

I.F=esecxdx 

I.F=elog(secx+tanx)

I.F=(secx+tanx)  

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

y(secx+tanx)=tanx(secx+tanx)dx+C 

y(secx+tanx)=tanxsecxdx+tan2xdx+C 

y(secx+tanx)=secx+(sec2x1)dx+C 

y(secx+tanx)=secx+sec2xdxdx+C 

y(secx+tanx)=secx+tanxx+C 

The general solution for given differential equation is y(secx+tanx)=secx+tanx-x+C.


5. Find the general solution for the differential equation cos2xdydx+y=tanx(0x π 2).

Ans: The given differential equation is:

cos2xdydx+y=tanx

dydx+(sec2x)y=sec2xtanx 

It is a linear differential equation of the form dydx+py=Q, with:

p=sec2x 

Q=sec2xtanx 

Calculate the integrating factor:

I.F=epdx 

I.F=esec2xdx 

I.F=etanx 

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

yetanx=etanx(sec2xtanx)dx+C 

yetanx=I+C(I=etanx(sec2xtanx)dx) ……(1)

Solving the integral I:

I=etanx(sec2xtanx)dx 

Substitute tanx=t :
tanx=t 

sec2xdx=dt 

I=ettdt 

I=tetdt((t)etdt)dt 

I=tet(et)dt 

I=tetet 

Back substitute t:

I=tanxetanxetanx 

Back substitute I in expression (1):

yetanx=I+C 

yetanx=tanxetanxetanx+C 

The general solution for given differential equation is yetanx=tanxetanx-etanx+C.


6. Find the general solution for the differential equation xdydx+2y=x2logx.

Ans: The given differential equation is:

xdydx+2y=x2logx

dydx+2xy=xlogx 

It is a linear differential equation of the form dydx+py=Q, with:

p=2x 

Q=xlogx 

Calculate the integrating factor:

I.F=epdx 

I.F=e2xdx 

I.F=e2logx

I.F=elogx2 

I.F=x2  

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

yx2=x2(xlogx)dx+C 

yx2=x3logxdx+C 

yx2=I+C(I=x3logxdx) ……(1)

Solving the integral I:

I=x3logxdx 

I=logxx3dx((logx)x3dx)dx 

I=x44logx(1x(x44))dx 

I=x44logx14x3dx 

I=x44logx14(x44) 

I=x44logxx416 

Back substitute I in expression (1):

yx2=I+C 

yx2=x44logxx416+C 

y=x216(4logx1)+Cx2 

The general solution for given differential equation is y=x216(4logx-1)+Cx-2.


7. Find the general solution for the differential equation xlogxdydx+y=2xlogx.

Ans: The given differential equation is:

xlogxdydx+y=2xlogx

dydx+yxlogx=2x2 

It is a linear differential equation of the form dydx+py=Q, with:

p=1xlogx 

Q=2x2 

Calculate the integrating factor:

I.F=epdx 

I.F=e1xlogxdx 

Substitute logx=t:
logx=t 

1xdx=dt 

I.F=e1tdt

I.F=elogt 

I.F=t

I.F=logx   

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

ylogx=2x2(logx)dx+C 

ylogx=I+C(I=2x2(logx)dx) ……(1)

Solving the integral I:

I=2x2(logx)dx 

I=2[logx1x2dx((logx)1x2dx)dx] 

I=2[logx(1x)(1x(1x))dx] 

I=2[logxx+(1x2)dx] 

I=2[logxx1x] 

Back substitute I in expression (1):

ylogx=I+C 

ylogx=2[logxx1x]+C 

ylogx=2x(logx+1)+C 

The general solution for given differential equation is ylogx=-2x(logx+1)+C.


8. Find the general solution for the differential equation (1+x2)dy+2xydx=cotxdx(x0).

Ans: The given differential equation is:

(1+x2)dy+2xydx=cotxdx(x0)

dydx+2xy1+x2=cotx1+x2 

It is a linear differential equation of the form dydx+py=Q, with:

p=2x1+x2 

Q=cotx1+x2 

Calculate the integrating factor:

I.F=epdx 

I.F=e2x1+x2dx 

Substitute logx=t:
1+x2=t 

2xdx=dt 

I.F=e1tdt

I.F=elogt 

I.F=t

I.F=1+x2   

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

y(1+x2)=cotx1+x2(1+x2)dx+C 

y(1+x2)=cotxdx+C

y(1+x2)=log|sinx|+C 

The general solution for given differential equation is y(1+x2)=log|sinx|+C.


9. Find the general solution for the differential equation xdydx+y-x+xycotx=0(x0).

Ans: The given differential equation is:

xdydx+yx+xycotx=0

dydx+yx1+ycotx=0 

dydx+(1x+cotx)y=1 

It is a linear differential equation of the form dydx+py=Q, with:

p=(1x+cotx) 

Q=1 

Calculate the integrating factor:

I.F=epdx 

I.F=e(1x+cotx)dx 

I.F=e1xdx+cotxdx

I.F=elogx+log(sinx) 

I.F=elog(xsinx)

I.F=xsinx   

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

y(xsinx)=(1)(xsinx)dx+C 

xysinx=I+C(I=xsinxdx) ……(1) 

Solving the integral I:

I=xsinxdx 

I=xsinxdx((x)sinxdx)dx 

I=x(cosx)+(cosx)dx 

I=xcosx+sinx 

Back substitute I in expression (1):

xysinx=I+C 

xysinx=xcosx+sinx+C 

y=cotx+1x+Cxsinx 

The general solution for given differential equation is y=-cotx+1x+Cxsinx.


10. Find the general solution for the differential equation (x+y)dydx=1.

Ans: The given differential equation is:

(x+y)dydx=1

dydx=1x+y 

dxdy=x+y 

dxdyx=y 

It is differential equation of the form dxdy+px=Q, with:

p=1 

Q=y 

Calculate the integrating factor:

I.F=epdy 

I.F=e1dy 

I.F=ey

General solution is of the form:

x(I.F)=(Q×I.F)dy+C 

x(ey)=(y)(ey)dy+C 

xey=I+C(I=yeydy) ……(1) 

Solving the integral I:

I=yeydy 

I=yeydy((y)eydy)dy 

I=yey+((1)ey)dy 

I=yey+eydy

I=yeyey  

Back substitute I in expression (1):

xey=I+C 

xey=yeyey+C 

x=y1+Cey

x+y+1=Cey  

The general solution for given differential equation is x+y+1=Cey.


11. Find the general solution for the differential equation ydx+(x-y2)dy=0.

Ans: The given differential equation is:

ydx+(xy2)dy=0

dxdy=y2xy 

dxdy+(1y)x=y 

It is differential equation of the form dxdy+px=Q, with:

p=1y 

Q=y 

Calculate the integrating factor:

I.F=epdy 

I.F=e1ydy 

I.F=elogy

I.F=y 

General solution is of the form:

x(I.F)=(Q×I.F)dy+C 

x(y)=(y)(y)dy+C 

xy=y2dy+C 

xy=y33+C 

x=y23+Cy 

The general solution for given differential equation is x=y23+Cy.


12. Find the general solution for the differential equation (x+3y2)dydx=y(y0).

Ans: The given differential equation is:

(x+3y2)dydx=y

dxdy=x+3y2y 

dxdy(1y)x=3y 

It is differential equation of the form dxdy+px=Q, with:

p=1y 

Q=3y 

Calculate the integrating factor:

I.F=epdy 

I.F=e1ydy 

I.F=elogy

I.F=elogy1 

I.F=1y 

General solution is of the form:

x(I.F)=(Q×I.F)dy+C 

x(1y)=(3y)(1y)dy+C 

xy=3dy+C 

xy=3y+C 

x=3y2+Cy 

The general solution for given differential equation is x=3y2+Cy.


13. Find particular solution for dydx+2ytanx=sinx satisfying y=0 when x= π 3.

Ans: The given differential equation is:

dydx+2ytanx=sinx 

dydx+(2tanx)y=sinx 

It is differential equation of the form dydx+py=Q, with:

p=2tanx 

Q=sinx 

Calculate the integrating factor:

I.F=epdx 

I.F=e2tanxdx 

I.F=e2log|secx|

I.F=elog(secx)2 

I.F=sec2x 

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

ysec2x=(sinx)(sec2x)dx+C 

ysec2x=tanxsecxdx+C 

ysec2x=secx+C 

y=cosx+Ccos2x 

Given y=0 when x= π 3:

0=cos(π3)+Ccos2(π3) 

0=12+C(12)2 

C=2 

Therefore the particular solution will be:

y=cosx2cos2x 

The particular solution for given differential equation satisfying the given conditions is y=cosx-2cos2x.


14. Find particular solution for (1+x2)dydx+2xy=11+x2 satisfying y=0 when x=1.

Ans: The given differential equation is:

(1+x2)dydx+2xy=11+x2 

dydx+(2x1+x2)y=1(1+x2)2 

It is differential equation of the form dydx+py=Q, with:

p=2x1+x2 

Q=1(1+x2)2 

Calculate the integrating factor:

I.F=epdx 

I.F=e2x1+x2dx 

I.F=e2log|secx|

I.F=elog(1+x2) 

I.F=1+x2 

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

y(1+x2)=(1(1+x2)2)(1+x2)dx+C 

y(1+x2)=11+x2dx+C 

y(1+x2)=tan1x+C 

Given y=0 when x=1:

0(1+1)=tan1(1)+C 

C+π4=0 

C=π4 

Therefore the particular solution will be:

y(1+x2)=tan1xπ4 

The particular solution for given differential equation satisfying the given conditions is y(1+x2)=tan-1x- π 4.


15. Find particular solution for dydx-3ycotx=sin2x satisfying y=2 when x= π 2.

Ans: The given differential equation is:

dydx3ycotx=sin2x 

dydx+(3cotx)y=sin2x 

It is differential equation of the form dydx+py=Q, with:

p=3cotx 

Q=sin2x 

Calculate the integrating factor:

I.F=epdx 

I.F=e3cotxdx 

I.F=e3log|sinx|

I.F=elog(1sin3x) 

I.F=1sin3x 

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

y(1sin3x)=(sin2x)(1sin3x)dx+C 

y(1sin3x)=2(sinxcosx)(1sin3x)dx+C 

ysin3x=2(cosxsin2x)dx+C 

ysin3x=2cotxcosecxdx+C 

ysin3x=2cosecx+C 

y=2sin2x+Csin3x 

Given y=2 when x= π 2:

2=2sin2(π2)+Csin3(π2) 

C2=2 

C=4 

Therefore the particular solution will be:

y=2sin2x+4sin3x 

The particular solution for given differential equation satisfying the given conditions is y=-2sin2x+4sin3x.


16. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x,y) is equal to the sum of the coordinates of the point.

Ans: According to  the slope of tangent dydx is equal to sum of the coordinates:

dydx=x+y 

The given differential equation is:

dydx=x+y 

dydx+(1)y=x 

It is differential equation of the form dydx+py=Q, with:

p=1 

Q=x 

Calculate the integrating factor:

I.F=epdx 

I.F=e1dx 

I.F=ex 

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

y(ex)=x(ex)dx+C 

yex=xexdx((x)exdx)dx+C 

yex=xex+(ex)dx+C 

yex=xexex+C 

y=x1+Cex 

y+x+1=Cex 

Given y=0 when x=0 as it passes through origin:

0+0+1=Ce0 

C=1 

Therefore the equation of the required curve is y+x+1=ex.


17. Find the equation of a curve passing through the point (0,2)  given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.

Ans: Let the slope of tangent be dydx.

According to :

x+y=dydx+5 

The given differential equation is:

x+y=dydx+5 

dydx+(1)y=x5 

It is differential equation of the form dydx+py=Q, with:

p=1 

Q=x5 

Calculate the integrating factor:

I.F=epdx 

I.F=e1dx 

I.F=ex 

General solution is of the form:

y(I.F)=(Q×I.F)dx+C 

y(ex)=(x5)(ex)dx+C 

y(ex)=x(ex)dx5exdx+C 

yex=xexdx((x)exdx)dx5exdxC 

yex=xex+(ex)dx+5ex+C 

yex=xexex+5ex+C 

yex=xex+4ex+C 

y=x+4+Cex 

y+x4=Cex 

Given as it passes through (0,2) :

2+04=Ce0 

C=2 

Therefore the equation of the required curve is:

 y+x4=2ex.


18. Find the integrating factor of the differential equation xdydx-y=2x2.

A. ex 

B. ey 

C. 1x 

D. x 

Ans: Given differential equation is:

xdydxy=2x2 

dydx(1x)y=2x2 

Thus it is a linear differential equation of the form dydx+py=Q:

p=1x 

I.F=epdx 

I.F=e1xdx

I.F=elog|x|  

I.F=elogx1

I.F=1x

Therefore integrating factor is 1x. Thus the correct option is (C).


19. Find the integrating factor of the differential equation (1-y2)dxdy+yx=ay(-1y1).

A. 1y21 

B. 1y21 

C. 11y2 

D. 11y2 

Ans: Given differential equation is:

(1y2)dxdy+yx=ay 

dxdy+(y1y2)x=ay(1y2) 

Thus it is a linear differential equation of the form dxdy+px=Q:

p=y1y2 

I.F=epdy 

I.F=ey1y2dy

I.F=e122y1y2dy  

I.F=e12log(1y2)

I.F=elog(1y2)12

I.F=11y2 

Therefore integrating factor is 11-y2. Thus the correct option is (D).


Miscellaneous Exercise 

1. For each of the differential equations given below, indicate its order and degree (if defined).

(i)d2ydx2+5x(dydx)2-6y=logx 

Ans: The given differential equation is:

 d2ydx2+5x(dydx)26ylogx=0 

The highest order derivative in the equation is of the term d2ydx2, thus the order of the equation is 2 and its highest power is 1. Therefore its degree is 1.


(ii)(dydx)34(dydx)2+7y=sinx 

Ans: The given differential equation is:

 (dydx)34(dydx)2+7ysinx=0 

The highest order derivative in the equation is of the term (dydx)3, thus the order of the equation is 1 and its highest power is 3. Therefore its degree is 3.


(iii)d4ydx4-sin(d3ydx3)=0 

Ans: The given differential equation is:

 d4ydx4sin(d3ydx3)=0 

The highest order derivative in the equation is of the term d4ydx4, thus the order of the equation is 4.

As the differential equation is not polynomial in its derivative, therefore its degree is not defined.


2. For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.

  1. xy=aex+be-x+x2:xd2ydx2+2dydx-xy+x2-2=0 

Ans: The given function is:
xy=aex+bex+x2 

Take derivative on both side:

y+xdydx=aexbex+2x 

Take derivative on both side:

dydx+xd2ydx2+dydx=aex+bex+2 

xd2ydx2+2dydx=aex+bex+2 ……(1)

The given differential equation is:
xd2ydx2+2dydxxy+x22=0 

Solving LHS:

Substitute xd2ydx2+2dydx from the result (1) and xy:

(xd2ydx2+2dydx)xy+x22 

(aex+bex+2)(aex+bex+x2)+x22 

2x2+x22 

0 

Thus LHS=RHS, the given function is the solution of the given differential equation. 


  1. y=ex(acosx+bsinx):d2ydx2-2dydx+2y=0 

Ans: The given function is:
y=ex(acosx+bsinx) 

Take derivative on both side:

dydx=ex(acosx+bsinx)+ex(asinx+bcosx) 

dydx=ex((a+b)cosx+(ba)sinx) 

Take derivative on both side:

d2ydx2=ex((a+b)cosx+(ba)sinx)+ex((a+b)sinx+(ba)cosx)

d2ydx2=ex((a+b+ba)cosx+(baab)sinx) 

d2ydx2=ex(2bcosx2asinx)  

The given differential equation is:
d2ydx22dydx+2y=0 

Solving LHS:

ex(2bcosx2asinx)2ex((a+b)cosx+(ba)sinx)+2y 

ex((2b2a2b)cosx+(2a2b+2a)sinx)2y 

ex(2acosx2bsinx)2y 

2ex(acosx+bsinx)2y

0 

Thus LHS=RHS, the given function is the solution of the given differential equation. 


  1. y=xsin3x:d2ydx2+9y-6cos3x=0 

Ans: The given function is:
y=xsin3x 

Take derivative on both side:

dydx=sin3x+3xcos3x 

Take derivative on both side:

d2ydx2=3cos3x+3(cos3x+x(3sin3x))

d2ydx2=3cos3x+3cos3x9xsin3x 

d2ydx2=6cos3x9xsin3x  

The given differential equation is:
d2ydx2+9y6cos3x=0 

Solving LHS:

d2ydx2+9y6cos3x 

(6cos3x9xsin3x)+9(xsin3x)6cos3x 

6cos3x9xsin3x+9xsin3x6cos3x 

0 

Thus LHS=RHS, the given function is the solution of the given differential equation. 


  1. x2=2y2log y:(x2+y2)dydx-xy=0 

Ans: The given function is:
x2=2y2logy 

Take derivative on both side:

2x=2(2ylogy+y2(1y))dydx 

dydx=x(2ylogy+y)

Multiply numerator and denominator by y:

dydx=xy(2y2logy+y2) 

dydx=xy(x2+y2)  

The given differential equation is:
(x2+y2)dydxxy=0 

Solving LHS:

(x2+y2)dydxxy 

(x2+y2)(xyx2+y2)xy 

xyxy 

0 

Thus LHS=RHS, the given function is the solution of the given differential equation. 


3. Prove that x2-y2=c(x2+y2)2  is the general solution of differential equation (x3-3xy2)dx=(y3-3x2y)dy , where c is a parameter.

Ans: Given differential equation:

(x33xy2)dx=(y33x2y)dy 

dydx=x33xy2y33x2y 

As it can be seen that this is an homogenous equation. Substitute y=vx:

d(vx)dx=x33x(vx)2(vx)33x2(vx) 

v+xdvdx=x3(13v2)x3(v33v) 

v+xdvdx=13v2v33v 

xdvdx=13v2v33vv 

xdvdx=13v2v4+3v2v33v 

xdvdx=1v4v33v 

Separate the differentials:

v33v1v4dv=dxx 

Integrate both side:

v33v1v4dv=dxx 

v33v1v4dv=logx+logC 

I=logx+logC(I=v33v1v4dv) ……(1)

Solving integral I:

I=v33v1v4dv 

v33v1v4=v33v(1v2)(1+v2) 

v33v1v4=v33v(1v)(1+v)(1+v2) 

Using partial fraction:

v33v1v4=A1v+B1+v+Cv+D1+v2 

Solving for A,B,CandD:

A=12 

B=12 

C=2 

D=0 

v33v1v4=121v+121+v+2v+01+v2 

I=1211vdv+1211+vdv2v1+v2dv

I=12(log(1v))+12(log(1+v))log(1+v2) 

I=12(log(1v2))22log(1+v2) 

I=12(log(1v2)(1+v2)2) 

I=12(log(1y2x2)(1+y2x2)2) 

I=12(logx2(x2y2)(x2+y2)2)

I=12(log(x2y2)(x2+y2)2)+12logx2 

I=12(log(x2y2)(x2+y2)2)+logx 

 

Back substitute I in expression (1):

I=logx+logC 

12(log(x2y2)(x2+y2)2)+logx=logx+logC

log(x2y2)(x2+y2)2=2logC 

x2y2(x2+y2)2=C2 

x2y2=c(x2+y2)2(c=C2) 

Thus for given differential equation, its general solution is x2-y2=c(x2+y2)2.


4. Find the general solution of the differential equation dydx+1-y21-x2=0.

Ans: The given differential equation is:

 dydx+1y21x2=0 

dydx=1y21x2 

dy1y2=dx1x2 

Integrate both side:

dy1y2=dx1x2 

sin1y=sin1x+C

sin1y+sin1x=C 

Thus the general solution of given differential equation is sin-1y+sin-1x=C.


5. Show that the general solution of the differential equation dydx+y2+y+1x2+x+1=0 is given by (x+y+1)=A(1-x-y-2xy)  where A is a parameter. 

Ans: The given differential equation is:

dydx+y2+y+1x2+x+1=0

dydx=y2+y+1x2+x+1

dydx=y2+2(12)y+1414+1x2+2(12)x+1414+1 

dydx=(y+12)2+34(x+12)2+34   

dy(y+12)2+34=dx(x+12)2+34 

Integrate both side:

dy(y+12)2+(32)2=dx(x+12)2+(32)2

1(32)tan1[y+1232]=1(32)tan1[x+1232]+C 

23(tan1[2y+13]+tan1[2x+13])=C 

tan1[2y+13]+tan1[2x+13]=32C 

Thus the general solution for given differential equation is tan-1[2y+13]+tan-1[2x+13]=32C.


6. Find the equation of the curve passing through the point (0,π4) whose differential equation is sinxcosydx+cosxsinydy=0.

Ans: Given differential equation is:

sinxcosydx+cosxsinydy=0

sinxcosydx+cosxsinydy=0

Divide both side by cosxcosy:

sinxcosydx+cosxsinydycosxcosy=0 

tanxdx+tanydy=0 

tanydy=tanxdx 

Integrate both side:

tanydy=tanxdx 

log(secy)=log(secx)+C 

log(secy)+log(secx)=C 

log(secxsecy)=C 

secxsecy=k(k=eC) 

As curve passes through (0, π 4):

sec0sec(π4)=k 

k=2 

secxsecy=2 

Thus the equation of required curve is secxsecy=2.


7. Find the particular solution of the differential equation (1+e2x)dy+(1+y2)exdx=0 given that y=1 when x=0.

Ans: The given differential equation is:

(1+e2x)dy+(1+y2)exdx=0 

Divide both side (1+e2x)(1+y2):

dy(1+y2)+ex(1+e2x)dx=0 

dy(1+y2)=ex(1+e2x)dx 

tan1y=ex(1+(ex)2)dx

Substitute t=ex:

dt=exdx 

tan1y=1(1+t2)dt 

tan1y=tan1t+C 

tan1y=tan1ex+C 

tan1y+tan1ex=C 

As y=1 when x=0:

tan1(1)+tan1(e0)=C 

π4+π4=C 

C=π2 

tan1y+tan1ex=π2 

Thus the required particular solution is tan-1y+tan-1ex= π 2.


8. Solve the differential equation yexydx=(xexy+y2)dy(y0).

Ans: The given differential equation is:

yexydx=(xexy+y2)dy 

yexydxdy=xexy+y2 

yexydxdyxexy=y2 

exy[ydxdyx]y2=1 

Substitute z=exy:

z=exy 

ddyz=ddyexy 

dzdy=ddy(exy) 

dzdy=exyddy(xy) 

dzdy=exy[(1y)dxdyxy2] 

dzdy=exy[ydxdyxy2] 

dzdy=1 

dz=dy 

dz=dy

z=y+C 

exy=y+C 

Thus the required general solution is exy=y+C.


9. Find a particular solution of the differential equation (x-y)(dx+dy)=dx-dy given that y=-1 when x=0. Hint (put x-y=t).

Ans: Given differential equation is:

(xy)(dx+dy)=dxdy 

(xy)dxdx=(yx)dydy

(xy+1)dy=(1x+y)dx 

dydx=1x+yxy+1 

Put x-y=t:

xy=t 

1dydx=dtdx 

1dtdx=dydx 

1dtdx=1t1+t 

dtdx=11t1+t

dtdx=1+t1+t1+t 

dtdx=2t1+t 

1+ttdt=2dx 

Integrate both side:

1+ttdt=2dx

1tdt+dt=2x+C 

log|t|+t=2x+C 

log|xy|+xy=2x+C 

log|xy|y=x+C 

As y=-1 when x=0:

log|0(1)|(1)=0+C 

log1+1=C 

C=1 

Thus the required particular solution is:

log|xy|y=x+1.


10. Solve the differential equation [e-2xx-yx]dxdy=1(x0).

Ans: Given differential equation is:
[e2xxyx]dxdy=1 

dydx=e2xxyx 

dydx+yx=e2xx 

It is linear differential equation of the form dydx+py=Q:

p=1x 

Q=e2xx 

Calculating integrating factor:

I.F=epdx

I.F=e1xdx 

I.F=e2x  

The general solution is given by:

y×I.F=(Q×I.F)dx+C 

y×(e2x)=(e2xx×e2x)dx+C 

ye2x=(e2x+2xx)dx+C 

ye2x=1xdx+C 

ye2x=2x+C 

Thus the general solution for the given differential equation is

ye2x=2x+C.


11. Find a particular solution of the differential equation dydx+ycotx=4xcosecx(x0) given that y=0 when x= π 2.

Ans:
The given differential equation is:

 dydx+ycotx=4xcosecx 

It is linear differential equation of the form dydx+py=Q:

p=cotx 

Q=4xcosecx 

Calculating integrating factor:

I.F=epdx

I.F=ecotxdx 

I.F=elog|sinx| 

I.F=sinx 

The general solution is given by:

y×I.F=(Q×I.F)dx+C

y×sinx=(4xcosecx)sinxdx+C 

ysinx=4xdx+C 

ysinx=4(x22)+C 

ysinx=2x2+C 

As y=0 when x= π 2:

0×sin(π2)=2(π2)2+C 

C=2(π24) 

C=π22 

Thus the required particular solution is:

ysinx=2x2π22


12. Find a particular solution of the differential equation (x+1)dydx=2e-y-1 given that y=0 when x=0.

Ans:
The given differential equation is:

 (x+1)dydx=2ey1

dy2ey1=dxx+1 

Integrate both side:

dy2ey1=dxx+1 

dy2ey1=log(x+1)+logC ……(1) 

Evaluating LHS integral:

dy2ey1=eydy2ey 

Put t=2-ey:

t=2ey

dt=eydy  

dy2ey1=dtt

dy2ey1=log(t) 

dy2ey1=log1t 

dy2ey1=log12ey 

Back substituting in expression (1):

dy2ey1=log(x+1)+logC 

log(12ey)=logC(x+1) 

2ey=1C(x+1) 

As y=0 when x=0:

2e0=1C(0+1) 

21=1C 

C=1 

Thus the required particular solution is:

2ey=1(x+1)

ey=21(x+1) 

ey=2x+21(x+1) 

ey=2x+1x+1 

y=log(2x+1x+1)  

Thus for given conditions the particular solution is y=log(2x+1x+1) .


13. The general solution of the differential equation ydx-xdyy=0.

A. xy=C 

B. x=Cy2 

C. y=Cx 

D. y=Cx2 


Ans: Given differential equation:

ydxxdyy=0

Divide both side by x :

ydxxdyxy=0

dxxdyy=0 

Integrate both side:

dxxdyy=0 

log|x|log|y|=logk 

log|xy|=logk 

xy=k 

y=Cx(C=1k)

Thus the correct option is (C)


14. Find the general solution of a differential equation of the type dxdy+P1x=Q1.

A. yeP1dy=(Q1eP1dy)dy+C   

B. yeP1dx=(Q1eP1dx)dy+C 

C. xeP1dy=(Q1eP1dy)dy+C   

D. xeP1dy=(Q1eP1dx)dy+C   

Ans: The given differential equation is:

dxdy+P1x=Q1 

It is a linear differential equation and its general solution is:

xeP1dy=(Q1eP1dy)dy+C 

With integrating factor I.F=eP1dy.

Thus the correct option is (C).


15. Find the general solution of the differential equation exdy+(yex+2x)dx=0.

A. xey+x2=C 

B. xey+y2=C 

C. yex+x2=C 

D. yey+x2=C 

Ans: The given differential equation is:
exdy+(yex+2x)dx=0 

exdydx+yex=2x 

dydx+y=2xex   

The given differential equation is of the form:

dydx+Py=Q 

P=1 

Q=2xex 

Calculating integrating factor:
I.F=ePdx

I.F=edx 

I.F=ex  

It is a linear differential equation and its general solution is:

y(I.F)=(Q×I.F)dx+C

 y(ex)=(2xex×ex)dy+C 

yex=2xdx+C 

yex=2(x22)+C 

yex+x2=C 

Thus the correct answer is option (C).


NCERT Solutions for Class 12 Maths Chapter 9 Important Points

  • Differential Equation: A differential equation has an independent variable, a dependent variable, derivatives of the dependent variable with respect to the independent variable, and a constant.

  • Ordinary Differential Equation: An ordinary differential equation is one that involves derivatives of the dependent variable with respect to only one independent variable.

  • Order of a Differential Equation: The order of a differential equation is defined as the highest order derivative of the dependent variable with respect to the independent variable.

  • Degree of a Differential Equation: The degree of a differential equation is the highest exponent of the highest order derivative if the exponent of each derivative is a non-negative integer and the unknown variable in the differential equation is a non-negative integer.

  • General solution: The general solution of a differential equation is one that contains as many arbitrary constants as the order of the differential equation, i.e., if the solution of a differential equation of order n has n arbitrary constants, it is the general solution.

  • Particular Solution: The particular solution is a solution obtained by giving particular values to arbitrary constants in the general solution of a differential equation.


Overview of Deleted Syllabus for CBSE Class 12 Maths Differential Equations

Chapter

Dropped Topics

Differential Equations

9.4 Formation of Differential Equations Whose General Solution is Given

Page 415-416 Example 25

Ques. 3, 5 and 15 (Miscellaneous Exercise)

Point Six of the Summary


Class 12 Maths Chapter 9: Exercises Breakdown

Chapter 10 - Circles Exercises in PDF Format

Exercise 9.1

12 Questions (10 Short Questions, 2 MCQs)

Exercise 9.2

12 Questions (10 Short Questions, 2 MCQs)

Exercise 9.3

23 Questions (10 Short Questions, 12 Long Questions, 1 MCQs)

Exercise 9.4

17 Questions (15 Short Questions, 2 MCQs)

Exercise 9.5

19 Questions (2 Long Questions, 15 Short Questions, 2 MCQs)


Conclusion

The Solutions for Maths Chapter 9 class 12 differential equations NCERT solutions, provided by Vedantu, are designed to help students understand the ability to analyse and solve problems involving rates of change and relationships between variables - a valuable skill in various scientific disciplines. This chapter provides tools to analyse and solve equations, which have numerous applications in various scientific fields.


From previous year's question papers, around 8 questions are typically asked from this chapter. Understanding and practising these solutions will help students score well on their exams.


Other Study Material for CBSE Class 12 Maths Chapter 9



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations

1. What is a differential equation as stated in Class 12 books?

Differential equations assist you in differentiating any function w.r.t an independent variable. It describes a relationship between the functions and their derivatives. The functions refer to the physical quantities whereas their derivatives refer to the rate at which the function is changing and this relationship is differential equations. A D.E. takes the form dy/dx = g(x). Here, y signifies the function. And the function cited here is f(x).

2. How do you solve differential equations?

Differential equations can be of different orders. There are various approaches to solve these equations. For solving first-order linear differential equations, we need to perform the substitution. Then, after part factorization, one can perform the separation of variables. Once this step is successfully done, we can substitute the original value. Perform these steps until the solution is obtained for the original equation.

3. Is Class 12 Maths Chapter 9 tough?

Practice makes Maths easy for any student. Once the student is able to clearly grasp the basic concepts and learns the tricks to solve each question, only then will Maths be easy for that student. Hence, it is important to learn the basics well and practise thoroughly for all types of questions with sincerity. The Class 12 Maths syllabus is a mix of different questions in terms of difficulty. Visit the page NCERT Solutions Class 12 Maths Chapter 9 for the solutions

4. What is the order and degree of the differential equation? Give an example.

Order simply helps to find out the order of the highest term in any D.E., which is basically the term with the highest exponent value. For instance, in this equation, dy/dx + 4 = 2, the order is 1. The degree of any D.E. is associated with its order. The power raised to which the highest term is characterised is the degree of the D.E. In the above-cited example of the 1st order D.E., the degree of the D.E. is 1. Modules relating to this topic or other topics covered in this chapter can be found on the Vedantu website or on the Vedantu app at free of cost.

5. What is the best Solution book for NCERT Class 12 Maths Chapter 9?

You may acquire NCERT Class 12 Math Solutions by going to the Vedantu website and searching for Class 12 Maths solutions. Aside from that, you may access a variety of modules that will assist you in achieving high marks in Maths examinations. The exercise solutions are provided on the page NCERT Solutions Class 12 Maths Chapter 9. Click on it to download a PDF of the solutions.

6. What kind of problems are covered in the NCERT Solutions for Differential Equations Class 12 NCERT Solutions?

The solutions address various problems related to:

  • Identifying the order and degree of differential equations.

  • Forming differential equations from real-world scenarios.

  • Solving differential equations using methods like variable separation, homogeneous equations, and linear equations (for beginners).

  • Applying integrating factors (for slightly advanced problems).

  • Understanding applications of differential equations in areas like population growth, motion, and electrical circuits.

7. Are there solutions for differential equation class 12 for advanced techniques like Laplace Transform?

The NCERT solutions primarily focus on methods for beginners and intermediate learners.  For advanced techniques like Laplace Transform, you might need to refer to other resources like advanced mathematics textbooks or online tutorials dedicated to the topic.

8. What is a differential equation?

A differential equation is a mathematical equation that relates a function with its derivatives. It describes the rate at which a quantity changes. For example, dy/dx =f(x,y) is a first-order differential equation.

9. How are exact differential equations solved in differential equations class 12 NCERT solutions?

Exact differential equations are solved by finding a potential function whose partial derivatives match the terms in the differential equation. If the equation is not exact, an integrating factor might be used to make it exact.

10. What are the applications of differential equations Class 12?

Differential equations are used in various fields such as physics (motion, heat, waves), biology (population models), economics (growth models), and engineering (circuit analysis).