NCERT Maths Chapter 9 Differential Equations Class 12 Solutions - Free PDF Download
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations explores the fundamental concepts, formation, and solutions of differential equations, which are equations involving derivatives of functions. Differential equations are equations that involve derivatives of a function. This chapter introduces students to the concepts of order and degree of a differential equation, the formation of differential equations, and methods of solving them.


Whether you are doing your homework or preparing for exams, these solutions are designed to align with the CBSE marking scheme and guidelines, ensuring you grasp CBSE Class 12 Maths Syllabus thoroughly and perform well in your exams.
Glance on Maths Chapter 9 Class 12 - Differential Equations
Chapter 9 of class 12 differential equations NCERT solutions Maths involves an unknown function and its derivatives.
An equation involving derivatives of the dependent variable to independent variables (variables) is known as a differential equation.
The order of a differential equation is the order of the highest-order derivative occurring in the differential equation.
The degree of a differential equation is defined if it is a polynomial equation in its derivatives.
A function that satisfies the given differential equation is called its solution. The solution which contains as many arbitrary constants as the order of the differential equation is called a general solution and the solution free from arbitrary constants is called a particular solution
To form a differential equation from a given function we differentiate the function successively as many times as the number of arbitrary constants in the given function and then eliminate the arbitrary constants.
This article contains chapter notes, important questions, exemplar solutions, exercises, and video links for Chapter 9 - Differential Equations, which you can download as PDFs.
There are five exercises (98 fully solved questions) in class 12th maths chapter 9 Differential Equations.
Access Exercise wise NCERT Solutions for Chapter 9 Maths Class 12
Exercises Under NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations
The chapter is divided into five exercises and one miscellaneous exercise. Here is a brief summary of each exercise:
Exercise 9.1: This exercise asks students to verify whether a given function is a solution of a given differential equation. A general solution is the one where the independent arbitrary constants of the equation are equal to the order of the equation. So for an equation d2y/dx2 + y = 0, its general solution would be given as y = K Cos x + C sin x, since it has 2 arbitrary constants K and C which are equal to the order of the equation that is 2. To find the particular solution of a differential equation, the arbitrary constants need to be given particular values. So, in the above example, above if we replace K = C = 1, we get the solution y = cos x + sin x which is termed as the particular solution of the differential equation.
Exercise 9.2: This exercise asks students to find the order and degree of given differential equations. In this, you would learn how to formulate differential equations given “n” arbitrary constants and differentiate the equation n times over to get the n + 1 equations. When you eliminate the arbitrary constants from these n + 1 equations, you will get the required differential equation. You would use this method to derive a differential equation that represents a family of curves.
Exercise 9.3: This exercise asks students to solve differential equations of the first order and first degree.
Exercise 9.4: This exercise asks students to solve differential equations of the first order and higher degree.
Exercise 9.5: This exercise asks students to solve differential equations of second order and higher degree.
Overall, this chapter is essential for students who want to pursue higher education in Mathematics and Physics. It provides a solid foundation for students to understand differential equations and their applications in real-world problems.
Access NCERT Solutions for Class 12 Maths Chapter 9 – Differential Equations
Exercise 9.1
1. Determine order and degree (if defined) of differential equation
Ans: Rewrite the equation
The highest order between the two terms is of
The differential equation contains a trigonometric derivative term and is not completely polynomial in its derivative, thus degree is not defined.
2. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order term is
As the derivative is of completely polynomial nature is and highest power of derivative is of
3. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order term is
As the derivative is of completely polynomial nature is and highest power of derivative term
4. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order term is
The differential equation contains a trigonometric derivative term and is not completely polynomial in its derivative, thus degree is not defined.
5. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order term is
As the derivative is of completely polynomial nature is and highest power of derivative term
6. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order term is
The differential equation is of the polynomial form and the power of highest order term
7. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order derivative in the differential equation is
The differential equation is polynomial with the highest order term
8. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order derivative in the differential equation is
The given equation is of polynomial form with the highest order term
9. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order derivative in the differential equation is
The given equation is of polynomial form with the highest order term
10. Determine order and degree (if defined) of differential equation
Ans: The given differential equation is
The highest order derivative in the differential equation is
The given equation is of polynomial form with the highest order term
11. Find the degree of the differential equation
(A)
(B)
(C)
(D)not defined
Ans: The given differential equation is
The differential equation is not polynomial in its derivative because of the term
The correct answer is (D).
12. Find the order of the differential equation
(A)
(B)
(C)
(D)not defined
Ans: The given differential equation is
The highest order term of the equation is
The correct answer is (A).
Exercise 9.2
1. Verify the function
Ans: The given function is
Take its derivative:
Take the derivative of the above equation:
Using result from equation (1):
Thus the given function is solution of differential equation
2. Verify the function
Ans: The given function is
Take its derivative:
Thus the given function is solution of differential equation
3. Verify the function
Ans: The given function is
Take its derivative:
Thus the given function is solution of differential equation
4. Verify the function
Ans: The given function is
Take its derivative:
Multiply numerator and denominator by
Substitute
Thus the given function is solution of differential equation
5. Verify the function
Ans: The given function is
Take its derivative:
Multiply by
Substitute
Thus the given function is solution of differential equation
6. Verify the function
Ans: The given function is
Take its derivative:
Multiply by
Substitute
Use
Thus the given function is solution of differential equation
7. Verify the function
Ans: The given function is
Take derivative on both side:
Shift the
Thus the given function is solution of differential equation
8. Verify the function
Ans: The given function is
Take derivative on both side:
Multiply by
Substitute
Thus the given function is solution of differential equation
9. Verify the function
Ans: The given function is
Take derivative on both side:
Thus the given function is solution of differential equation
10. Verify the function
Ans: The given function is:
Take derivative on both side:
Substitute
Thus the given function is solution of differential equation:
11. Find the numbers of arbitrary constants in the general solution of a differential equation of fourth order.
(A)
(B)
(C)
(D)
Ans: The number of arbitrary constants in the general solution of a differential equation is equal to its order. As the given differential equation is of fourth order, thus it has four arbitrary constants in its solution.
The correct answer is (D).
12. Find the numbers of arbitrary constants in the particular solution of a differential equation of third order.
(A)
(B)
(C)
(D)
Ans: The particular solution of any differential equation does not have any arbitrary constants. Thus it has zero constants in its solution.
The correct answer is (D).
Exercise 9.3
1. Find the general solution for
Ans: The given differential equation is
Use trigonometric half –angle identities to simplify:
Separate the differentials and integrate:
Thus the general solution of given differential equation is
2. Find the general solution for
Ans: The given differential equation is
Simplify the expression:
Use standard integration:
Thus the general solution of given differential equation is
3. Find the general solution for
Ans: The given differential equation is
Simplify the expression:
Use standard integration:
Thus the general solution of given differential equation is
4. Find the general solution for
Ans: The given differential equation is:
Divide both side by
Integrate both side:
Use a substitution method for integration. Substitute
For integral on RHS:
Thus evaluating result form (1):
Thus the general solution of given differential equation is
5. Find the general solution for
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
Use a substitution method for integration. Substitute
For integral on RHS:
Thus evaluating result form (1):
Thus the general solution of given differential equation is
6. Find the general solution for
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
Use standard integration:
Thus the general solution of given differential equation is
7. Find the general solution for
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
Use substitution method for integration on LHS. Substitute
Evaluating expression (1):
Thus the general solution of given differential equation is
8. Find the general solution for
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
Thus the general solution of given differential equation is
9. Find the general solution for
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
Use product rule of integration:
Substitute
Evaluating the integral:
Thus the general solution of given differential equation is
10. Find the general solution for
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
Substitute
Evaluating the LHS integral of (1):
Substitute
Evaluating the RHS integral of (1):
Therefore the integral (1) will be:
Thus the general solution of given differential equation is
11. Find the particular solution of
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
Use partial fraction method to simplify the RHS:
By comparing coefficients:
Solving this we get:
Rewriting the integral(1):
For
Thus the required particular solution is :
12. Find the particular solution of
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
Use partial fraction method to simplify the RHS:
By comparing coefficients:
Solving this we get:
Rewriting the integral(1):
For
Thus the required particular solution is :
13. Find the particular solution of
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
For
Thus the required particular solution is:
14. Find the particular solution of
Ans: The given differential equation is:
Simplify the expression:
Integrate both side:
For
Thus the required particular solution is :
15. Find the equation of a curve passing through the point (0, 0) and whose differential equation is
Ans: The given differential equation is:
The curve passes through
Simplify the expression:
Integrate both side:
Use product rules for integration of RHS. Let:
Thus integral will be:
Thus as the curve passes through
Thus the equation of the curve will be:
16. For the differential equation
Ans: The given differential equation is:
The curve passes through
Simplify the expression:
Integrate both side:
Thus as the curve passes through
Thus the equation of the curve will be:
17. Find the equation of a curve passing through the point
Ans: According to , the equation is given by:
The curve passes through
Simplify the expression:
Integrate both side:
Thus as the curve passes through
Thus the equation of the curve will be:
18. At any point
Ans: Let the point of contact of the tangent be
According to the for the slope of tangent
Simplify the expression:
Integrate both side:
Thus as the curve passes through
Thus the equation of the curve will be:
19. The volume of spherical balloons being inflated changes at a constant rate. If initially its radius is
Ans: Let the volume of spherical balloon be
Integrate both side:
At initial time,
At
Thus the radius-time relation can be given by:
The radius of balloon after
.
20. In a bank, principal increases continuously at the rate of
Ans: Let the principal be
Simplify the expression:
Integrate both side:
At
Thus the principle and rate of interest relation:
At
Take logarithm on both side:
Thus the rate of interest
21. In a bank, principal increases continuously at the rate of
Ans: Let the principal be
Simplify the expression:
Integrate both side:
At
Thus the relation of principal and time relation:
At
Thus after
22. In a culture, the bacteria count is
Ans: Let the number of bacteria be
Here
Simplify the expression:
Integrate both side:
At
At
For
Back substituting using expression (1):
Thus time required for bacteria to reach
23. Find the general solution of the differential equation
(A)
(B)
(C)
(D)
Ans: The given differential equation is
Integrate both side:
Thus the general solution of given differential equation is
Thus the correct option is (A).
Exercise 9.4
1. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
The solution of the given differential equation
2. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
.
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
The solution of the given differential equation
3. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
The solution of the given differential equation
4. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
The solution of the given differential equation
5. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
The solution of the given differential equation
6. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
7. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
The solution of the given differential equation
8. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
The solution of the given differential equation
9. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Solving :
Substitute
Thus the integral will be:
Using above result for solving (1):
Back substitute
The solution of the given differential equation
10. Show that, differential equation
Ans: Rewrite the equation in standard form:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Solving the LHS integral. Substitute
Solving the expression (1):
Back substitute
The solution of the given differential equation
11. For the differential equation
Ans: Given differential equation is:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
Now
The required particular solution:
12. For the differential equation
Ans: Given differential equation is:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
Now
The required particular solution:
13. For the differential equation
Ans: Given differential equation is:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
Now
The required particular solution:
14. For the differential equation
Ans: Given differential equation is:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
Now
The required particular solution:
15. For the differential equation
Ans: Given differential equation is:
Checking for homogeneity:
Thus it is an homogenous equation.
Let
Separate the differentials:
Integrate both side:
Back substitute
Now
The required particular solution:
16. What substitution should be used for solving homogeneous differential equation
A.
B.
C.
D.
Ans: The required substitution will be:
The correct answer is (C).
17. Which of the following equation is homogeneous:
Ans: For option (A):
For option (B):
For option (C):
For option (D):
Thus the correct answer is option (D).
Exercise 9.5
1. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Back substituting
The general solution for given differential equation is
2. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
General solution is of the form:
The general solution for given differential equation is
3. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
General solution is of the form:
The general solution for given differential equation is
4. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
General solution is of the form:
The general solution for given differential equation is
5. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Solving the integral
Substitute
Back substitute
Back substitute
The general solution for given differential equation is
6. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Solving the integral
Back substitute
The general solution for given differential equation is
7. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
Substitute
General solution is of the form:
Solving the integral
Back substitute
The general solution for given differential equation is
8. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
Substitute
General solution is of the form:
The general solution for given differential equation is
9. Find the general solution for the differential equation
Ans: The given differential equation is:
It is a linear differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Solving the integral
Back substitute
The general solution for given differential equation is
10. Find the general solution for the differential equation
Ans: The given differential equation is:
It is differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Solving the integral
Back substitute
The general solution for given differential equation is
11. Find the general solution for the differential equation
Ans: The given differential equation is:
It is differential equation of the form
Calculate the integrating factor:
General solution is of the form:
The general solution for given differential equation is
12. Find the general solution for the differential equation
Ans: The given differential equation is:
It is differential equation of the form
Calculate the integrating factor:
General solution is of the form:
The general solution for given differential equation is
13. Find particular solution for
Ans: The given differential equation is:
It is differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Given
Therefore the particular solution will be:
The particular solution for given differential equation satisfying the given conditions is
14. Find particular solution for
Ans: The given differential equation is:
It is differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Given
Therefore the particular solution will be:
The particular solution for given differential equation satisfying the given conditions is
15. Find particular solution for
Ans: The given differential equation is:
It is differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Given
Therefore the particular solution will be:
The particular solution for given differential equation satisfying the given conditions is
16. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point
Ans: According to the slope of tangent
The given differential equation is:
It is differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Given
Therefore the equation of the required curve is
17. Find the equation of a curve passing through the point
Ans: Let the slope of tangent be
According to :
The given differential equation is:
It is differential equation of the form
Calculate the integrating factor:
General solution is of the form:
Given as it passes through
Therefore the equation of the required curve is:
18. Find the integrating factor of the differential equation
A.
B.
C.
D.
Ans: Given differential equation is:
Thus it is a linear differential equation of the form
Therefore integrating factor is
19. Find the integrating factor of the differential equation
A.
B.
C.
D.
Ans: Given differential equation is:
Thus it is a linear differential equation of the form
Therefore integrating factor is
Miscellaneous Exercise
1. For each of the differential equations given below, indicate its order and degree (if defined).
(i)
Ans: The given differential equation is:
The highest order derivative in the equation is of the term
(ii)
Ans: The given differential equation is:
The highest order derivative in the equation is of the term
(iii)
Ans: The given differential equation is:
The highest order derivative in the equation is of the term
As the differential equation is not polynomial in its derivative, therefore its degree is not defined.
2. For each of the exercises given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.
Ans: The given function is:
Take derivative on both side:
Take derivative on both side:
The given differential equation is:
Solving LHS:
Substitute
Thus LHS=RHS, the given function is the solution of the given differential equation.
Ans: The given function is:
Take derivative on both side:
Take derivative on both side:
The given differential equation is:
Solving LHS:
Thus LHS=RHS, the given function is the solution of the given differential equation.
Ans: The given function is:
Take derivative on both side:
Take derivative on both side:
The given differential equation is:
Solving LHS:
Thus LHS=RHS, the given function is the solution of the given differential equation.
Ans: The given function is:
Take derivative on both side:
Multiply numerator and denominator by
The given differential equation is:
Solving LHS:
Thus LHS=RHS, the given function is the solution of the given differential equation.
3. Prove that
Ans: Given differential equation:
As it can be seen that this is an homogenous equation. Substitute
Separate the differentials:
Integrate both side:
Solving integral
Using partial fraction:
Solving for
Back substitute
Thus for given differential equation, its general solution is
4. Find the general solution of the differential equation
Ans: The given differential equation is:
Integrate both side:
Thus the general solution of given differential equation is
5. Show that the general solution of the differential equation
Ans: The given differential equation is:
Integrate both side:
Thus the general solution for given differential equation is
6. Find the equation of the curve passing through the point
Ans: Given differential equation is:
Divide both side by
Integrate both side:
As curve passes through
Thus the equation of required curve is
7. Find the particular solution of the differential equation
Ans: The given differential equation is:
Divide both side
Substitute
As
Thus the required particular solution is
8. Solve the differential equation
Ans: The given differential equation is:
Substitute
Thus the required general solution is
9. Find a particular solution of the differential equation
Ans: Given differential equation is:
Put
Integrate both side:
As
Thus the required particular solution is:
10. Solve the differential equation
Ans: Given differential equation is:
It is linear differential equation of the form
Calculating integrating factor:
The general solution is given by:
Thus the general solution for the given differential equation is
11. Find a particular solution of the differential equation
Ans:
The given differential equation is:
It is linear differential equation of the form
Calculating integrating factor:
The general solution is given by:
As
Thus the required particular solution is:
12. Find a particular solution of the differential equation
Ans:
The given differential equation is:
Integrate both side:
Evaluating LHS integral:
Put
Back substituting in expression (1):
As
Thus the required particular solution is:
Thus for given conditions the particular solution is
13. The general solution of the differential equation
A.
B.
C.
D.
Ans: Given differential equation:
Divide both side by
Integrate both side:
Thus the correct option is (C)
14. Find the general solution of a differential equation of the type
A.
B.
C.
D.
Ans: The given differential equation is:
It is a linear differential equation and its general solution is:
With integrating factor
Thus the correct option is (C).
15. Find the general solution of the differential equation
A.
B.
C.
D.
Ans: The given differential equation is:
The given differential equation is of the form:
Calculating integrating factor:
It is a linear differential equation and its general solution is:
Thus the correct answer is option (C).
NCERT Solutions for Class 12 Maths Chapter 9 Important Points
Differential Equation: A differential equation has an independent variable, a dependent variable, derivatives of the dependent variable with respect to the independent variable, and a constant.
Ordinary Differential Equation: An ordinary differential equation is one that involves derivatives of the dependent variable with respect to only one independent variable.
Order of a Differential Equation: The order of a differential equation is defined as the highest order derivative of the dependent variable with respect to the independent variable.
Degree of a Differential Equation: The degree of a differential equation is the highest exponent of the highest order derivative if the exponent of each derivative is a non-negative integer and the unknown variable in the differential equation is a non-negative integer.
General solution: The general solution of a differential equation is one that contains as many arbitrary constants as the order of the differential equation, i.e., if the solution of a differential equation of order n has n arbitrary constants, it is the general solution.
Particular Solution: The particular solution is a solution obtained by giving particular values to arbitrary constants in the general solution of a differential equation.
Overview of Deleted Syllabus for CBSE Class 12 Maths Differential Equations
Chapter | Dropped Topics |
Differential Equations | 9.4 Formation of Differential Equations Whose General Solution is Given |
Page 415-416 Example 25 | |
Ques. 3, 5 and 15 (Miscellaneous Exercise) | |
Point Six of the Summary |
Class 12 Maths Chapter 9: Exercises Breakdown
Chapter 10 - Circles Exercises in PDF Format | |
Exercise 9.1 | 12 Questions (10 Short Questions, 2 MCQs) |
Exercise 9.2 | 12 Questions (10 Short Questions, 2 MCQs) |
Exercise 9.3 | 23 Questions (10 Short Questions, 12 Long Questions, 1 MCQs) |
Exercise 9.4 | 17 Questions (15 Short Questions, 2 MCQs) |
Exercise 9.5 | 19 Questions (2 Long Questions, 15 Short Questions, 2 MCQs) |
Conclusion
The Solutions for Maths Chapter 9 class 12 differential equations NCERT solutions, provided by Vedantu, are designed to help students understand the ability to analyse and solve problems involving rates of change and relationships between variables - a valuable skill in various scientific disciplines. This chapter provides tools to analyse and solve equations, which have numerous applications in various scientific fields.
From previous year's question papers, around 8 questions are typically asked from this chapter. Understanding and practising these solutions will help students score well on their exams.
Other Study Material for CBSE Class 12 Maths Chapter 9
S.No. | Important Links for Chapter 9 Differential Equations |
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations
1. What is a differential equation as stated in Class 12 books?
Differential equations assist you in differentiating any function w.r.t an independent variable. It describes a relationship between the functions and their derivatives. The functions refer to the physical quantities whereas their derivatives refer to the rate at which the function is changing and this relationship is differential equations. A D.E. takes the form dy/dx = g(x). Here, y signifies the function. And the function cited here is f(x).
2. How do you solve differential equations?
Differential equations can be of different orders. There are various approaches to solve these equations. For solving first-order linear differential equations, we need to perform the substitution. Then, after part factorization, one can perform the separation of variables. Once this step is successfully done, we can substitute the original value. Perform these steps until the solution is obtained for the original equation.
3. Is Class 12 Maths Chapter 9 tough?
Practice makes Maths easy for any student. Once the student is able to clearly grasp the basic concepts and learns the tricks to solve each question, only then will Maths be easy for that student. Hence, it is important to learn the basics well and practise thoroughly for all types of questions with sincerity. The Class 12 Maths syllabus is a mix of different questions in terms of difficulty. Visit the page NCERT Solutions Class 12 Maths Chapter 9 for the solutions
4. What is the order and degree of the differential equation? Give an example.
Order simply helps to find out the order of the highest term in any D.E., which is basically the term with the highest exponent value. For instance, in this equation, dy/dx + 4 = 2, the order is 1. The degree of any D.E. is associated with its order. The power raised to which the highest term is characterised is the degree of the D.E. In the above-cited example of the 1st order D.E., the degree of the D.E. is 1. Modules relating to this topic or other topics covered in this chapter can be found on the Vedantu website or on the Vedantu app at free of cost.
5. What is the best Solution book for NCERT Class 12 Maths Chapter 9?
You may acquire NCERT Class 12 Math Solutions by going to the Vedantu website and searching for Class 12 Maths solutions. Aside from that, you may access a variety of modules that will assist you in achieving high marks in Maths examinations. The exercise solutions are provided on the page NCERT Solutions Class 12 Maths Chapter 9. Click on it to download a PDF of the solutions.
6. What kind of problems are covered in the NCERT Solutions for Differential Equations Class 12 NCERT Solutions?
The solutions address various problems related to:
Identifying the order and degree of differential equations.
Forming differential equations from real-world scenarios.
Solving differential equations using methods like variable separation, homogeneous equations, and linear equations (for beginners).
Applying integrating factors (for slightly advanced problems).
Understanding applications of differential equations in areas like population growth, motion, and electrical circuits.
7. Are there solutions for differential equation class 12 for advanced techniques like Laplace Transform?
The NCERT solutions primarily focus on methods for beginners and intermediate learners. For advanced techniques like Laplace Transform, you might need to refer to other resources like advanced mathematics textbooks or online tutorials dedicated to the topic.
8. What is a differential equation?
A differential equation is a mathematical equation that relates a function with its derivatives. It describes the rate at which a quantity changes. For example, dy/dx =f(x,y) is a first-order differential equation.
9. How are exact differential equations solved in differential equations class 12 NCERT solutions?
Exact differential equations are solved by finding a potential function whose partial derivatives match the terms in the differential equation. If the equation is not exact, an integrating factor might be used to make it exact.
10. What are the applications of differential equations Class 12?
Differential equations are used in various fields such as physics (motion, heat, waves), biology (population models), economics (growth models), and engineering (circuit analysis).

















