Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Molecule

Reviewed by:
ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon

Introduction to Molecule

A molecule definition, a group of two or more atoms that form the smallest recognizable unit into which the structure and chemical properties of that substance can be divided and preserved by a pure substance. 

A molecule may be homonuclear, meaning that it consists of atoms of a single chemical component, as with oxygen (O2); or it may be heteronuclear, as with water, a chemical compound consisting of more than one component (H2O).


Atoms and Molecules

Atoms consist of a single nucleus of a positive charge surrounded by a cloud of negatively charged electrons. The electron clouds communicate with each other and with the nuclei as atoms touch each other closely. If this interaction is such that the system's total energy is reduced, then the atoms bind to form a molecule together. Thus, a molecule consists, from a structural point of view, of an arrangement of atoms held together by the forces of valence. Two atoms that are chemically bound comprise diatomic molecules.

  • Diatomic Molecules — Only two atoms, of the same or different chemical elements, are composed of a diatomic atom. O2 and CO are representations of diatomic molecules. 

  • Heteronuclear Diatomic Molecules — A diatomic heteronuclear molecule consists of two combined atoms of the same substance. Carbon monoxide, hydrochloric acid (HCl), and hydrogen fluoride are examples of homonuclear diatomic molecules (HF)

  • Homonuclear Diatomic Molecules — A homonuclear diatomic molecule consists of two chemically fused atoms of different elements. . Seven diatomic elements are available: hydrogen (H2), nitrogen (N2), oxygen (O2), fluorine (F2), chlorine (Cl2), iodine (I2) and bromine (Br2). These seven elements are so reactive that they are most often found to be related to another atom of the same nature.


Molecular Mass

The sum of the atomic weights of its constituent atoms is the molecular weight of a molecule. If the molecular weight of a substance is M, then M grams of the substance is considered one mole. For all substances, the number of molecules in one mole is the same; this number is known as Avogadro's number (6.0221023). Through mass spectrometry and by techniques based on thermodynamics or kinetic transport processes, molecular weights can be calculated.


Water Molecule

The ratio of the number of atoms that can be bonded together to form molecules is fixed; each water molecule, for instance, contains two hydrogen atoms and one oxygen atom. Chemical compounds are differentiated from solutions and other mechanical mixtures by this characteristic. Hydrogen and oxygen can therefore be present in mechanical mixtures in any arbitrary proportion, but the chemical compound water can only combine in such amounts to form the chemical compound water (H2O). Here given the structure of water molecule -

(Image to be added soon)


Polar Molecule

  • Shared electron pairs, or covalent bonds, keep molecules together. Such bonds are directional, which means that the atoms take particular positions relative to each other in order to maximize the strength of the bonds. As a consequence, each molecule has a definite structure, or spatial distribution of its atoms, which is fairly rigid. 

  • Valence, which specifies how atoms join in definite ratios and how this is related to the bond directions and bond lengths, is concerned with structural chemistry. The properties of molecules are associated with their structures; the water molecule, for example, is structurally bent and thus has a dipole moment, Oxygen being electronegative pull electrons towards itself and attain a partial negative charge while the hydrogen atoms attain a partial positive charge which results in the formation of a polar molecule.

  • While the carbon dioxide molecule is linear and has no dipole moment and hence is a nonpolar molecule. 


ATP Molecule

Adenosine triphosphate (ATP) is an organic compound and hydrotrope that provides energy in living cells to drive several processes, such as muscle contraction, the transmission of nerve impulses, dissolution of condensate, and chemical synthesis. ATP is also referred to as the "molecular unit of currency" of intracellular energy transfer found in all known forms of life.

ATP is known as a nucleoside triphosphate from a biochemical point of view, which means that it consists of three components: a nitrogen base (adenine), a ribose sugar, and triphosphate.


Biological Molecules

Substances that cells and living organisms produce are known as biological molecules or biological macromolecules. Biomolecules have a broad variety of structures and sizes and perform a wide range of functions. There are mainly four types of biological molecules- carbohydrate, lipids, proteins, and nucleic acids.

  1. Among biomolecules, nucleic acids, namely DNA and RNA, have the unique role of storing the genetic code of an organism, the nucleotide sequence that specifies the protein sequence of amino acids that are critical to life on Earth. 

  2. Within a protein, there are 20 different amino acids that can occur; the order in which they occur plays a central role in deciding the structure and function of proteins.

  3. Carbohydrates, which mainly consist of molecules containing carbon, hydrogen, and oxygen atoms, are critical sources of energy and structural components of all life and are among the most abundant biomolecules on Earth. They are composed of monosaccharides, disaccharides, oligosaccharides, and polysaccharides from four types of sugar units.

  4. Lipids, another essential living organism biomolecule, perform a number of functions, including serving as a stored energy source and acting as chemical messengers.


Did You Know?

There are various methods to represent the molecular structure-

Element symbols represent atoms in Lewis structures, and dots represent electrons surrounding them. It is also possible to display a pair of mutual electrons (covalent bond) as a single dash. The ball-and-stick model better illustrates the spatial arrangement of the atoms. The Kekulé structure, in which each bond is represented by a slash, carbon atoms are implied where two or more lines intersect, and hydrogen atoms are typically omitted, is typical for aromatic compounds.


FAQs on Molecule

1. What is a molecule? Explain with an example.

A molecule is a particle made up of two or more atoms that are chemically bound together; a certain number is the number of atomic nuclei that make up a molecule. HCl(g) is, for instance, a molecule consisting of one atom of hydrogen bound to one atom of chlorine.

2. Are Element and Atom the same?

A part of an element is an atom. A particular element is composed of only one type of atom. Atoms are composed of subatomic particles called electrons, protons, and neutrons. In order to form molecules via chemical reaction, elements may combine with each other.

3. Can you see a molecule?

Typically, single molecules cannot be detected by light (as mentioned above), but in some cases, the use of an atomic force microscope can trace small molecules and even the outlines of individual atoms. Macromolecules or supermolecules are some of the largest molecules.