Class 11 Maths Formulas
Sets Formula
A set is a collection of elements. Now, these elements can be anything. Also, it can be a finite set as well as an infinite set.
The union of two sets X and Y can be denoted as X ∪ Y
The difference or intersection of two sets X and Y as X ⋂ Y
The complement of X is denoted by X’
(i) ( X ∪ Y )’ = X’ ⋂ Y’
(ii) ( X ⋂ Y )’ = X’ ∪ Y’
If ( X ⋂ Y ) = Φ, then n( X ∪ Y ) = n(A) + n(B)
( X ∪ Y ) = Φ, then n ( X ∪ Y ) = n(A) + n(B) - n(A ⋂ B)
Relations and Functions Formula
Formulas important in relations and functions chapter are:
A x B = { (a, b) : a є A, b є B }
If ( p, q ) = ( s, t ) = then p = s and q = t.
If n ( X ) = a and x ( Y ) = b, then n ( X x Y ) = x * y.
X x Φ = Φ.
The cartesian product: X x Y ≠ Y x X
A function f ( x ) from set X to set Y has on relation type where elements of set X have only one image in Y. Therefore, f ( x ) = y or f: X ➝ Y.
If function f: A ➝ R and g: A ➝ R, then:
( f + g ) ( x ) = f ( x ) + g ( x ), x Є A
( f - g ) ( x ) = f ( x ) - g ( x ), x Є A
( f . g ) ( x ) = f ( x ) . g ( x ), x Є A
( k f) (x) = k (f ( x ) ), x Є A , k is a number.
f/g ( x ) = f(x)/g(x), x Є A , g ( x ) ≠ 0
Trigonometric Functions Formula
Radius Measure = (π/180) x (Degree Measure)
Degree Measure = (180/π) x (Radian Measure)
Cos2 y + sin2 y = 1
1 + tan2 y = sec2 y
1 + cot2 y = cosec2 y
cos(2nπ + y) = cos y
sin(2nπ+ y) = sin y
sin ( π- y ) = -sin y
cos (π - y ) = - cos y
cos ( (π/2) - y ) = sin y
sin ( (π/2) - y ) = cos y
sin ( y + x ) = sin y * cos x + sin x * cos y
sin ( y - x ) = sin y * cos x - sin x * cos y
cos ( y + x ) = cos y * cos x - sin x * sin y
cos ( y - x ) = cos y * cos x + sin x * sin y
cos ( (π/2) + y ) = - sin y
sin ( (π/2) + y ) = - cos y
cos(π- y) = - cos y
sin (π - y) = sin y
cos(π + y) = cos y
sin (π + y) = - sin y
cos( 2π - y) = - cos y
sin ( 2π - y) = - sin y
tan (x + y) = (tan x + tan y)/(1 - tan x tan y)
tan (x - y) = (tan x - tan y)/(1 + tan x tan y)
cot (x + y) = (cot x cot y - 1)/(cot y - cot x)
cot (x - y) = (cot x cot y + 1)/(cot y - cot x)
Cos 2y = cos2 y - sin2 y = 2 cos2 y - 1 = 1 - 2 sin2 y = (1 - tan2y)/(1 + tan2y)
sin 2y = 2 sin y : cos y = (2 tan y) (1 + tan2y)
sin 3y = 3 sin y - 4 sin3 y
tan 3x = (3 tan x - tan3y)/(1 - 3 tan2y)
cos x + cos y = 2 cos (x + y)/2 cos (x - y)/2
cos x - cos y = - 2 sin (x + y)/2 sin(x - y)/2
sin x + sin y = 2 sin (x + y)/2 cos (x - y)/2
sin x - sin y = 2 cos (x + y)/2 sin (x - y)/2
2 cos x cos y = cos ( x + y ) + cos ( x - y )
- 2 sin x sin y = cos ( x + y ) - cos ( x - y )
2 sin x cos y = sin ( x + y ) + sin ( x - y )
2 cos x sin y = sin ( x + y ) - sin ( x - y )
sin y = 0; gives y = nπ, where n Є Z
cos y = 0; gives y = (2n + 1) π/2, where n Є Z
𝑠𝑖𝑛 𝑥 = 𝑠𝑖𝑛 𝑦; gives x = 𝑛𝜋 + ( - 1 )n y, where n Є Z
𝑐𝑜𝑠 𝑥 = 𝑐𝑜𝑠 𝑦; gives 𝑥 = 2𝑛𝜋 ± 𝑦, where n Є Z
Tan x = tan y y; gives x = n𝜋 + y, where n Є Z
FAQs on Maths Formulas for Class 11
1. Why is it Important to Keep the Formulas Handy?
These are some of the important maths formulas for class 11 pdf. You need to know the 11th Math formula so that you can solve the problems easily and faster than before. Also, you can find a lot of math formulas for class 11 and 12 pdf available online. Besides that, you’ll find the class 1 maths formula too. In addition to the above, if you have the list of 11th math formulas, it becomes easier to memorize them.