
The students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ are to be divided into 3 groups A, B, and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities for forming such groups is
Answer
133.8k+ views
Hint: Here the given question is based on concept of combination. To form a 3 groups A, B and C we have to solve it by 3 cases on ways of choosing 1 student to at most 3 students in a group by the concept of combination then summing over all three cases to get a required number of possibilities of forming a group
Formula Used: The formula used to calculate the combination is: $$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$$----(1)
Complete step by step Solution: Given, the 10 students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ i.e., $$n = 10$$
To form a 3 groups A, B and C group has at least one student and the group C has at most 3 students. Whenever,
Case 1: If group C has one student
Number of ways of selecting one student who will be in group C is $${}^{10}{C_1}$$ and the remaining students will be distributed into 2 groups is $$\left( {{2^9} - 2} \right)$$
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right)$$
Case 2: Similarly, if group C has two students
$$ \Rightarrow \,{}^{10}{C_2}\left( {{2^8} - 2} \right)$$
Case 3: Similarly, if group C has three students.
$$ \Rightarrow \,{}^{10}{C_3}\left( {{2^7} - 2} \right)$$
Now, Total number of ways is
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right) + {}^{10}{C_2}\left( {{2^8} - 2} \right) + {}^{10}{C_3}\left( {{2^7} - 2} \right)$$
By the formula of combination
$$ \Rightarrow \,\dfrac{{10!}}{{\left( {10 - 1} \right)!1!}}\left( {512 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 2} \right)!2!}}\left( {256 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 3} \right)!3!}}\left( {128 - 2} \right)$$
$$ \Rightarrow \,\dfrac{{10!}}{{9! \cdot 1!}}\left( {510} \right) + \dfrac{{10!}}{{8! \cdot 2!}}\left( {254} \right) + \dfrac{{10!}}{{7! \cdot 3!}}\left( {126} \right)$$
$$ \Rightarrow \,\dfrac{{10 \times 9!}}{{9!\, \times 1!}}\left( {510} \right) + \dfrac{{10 \times 9 \times 8!}}{{8!\, \times 2!}}\left( {254} \right) + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!\, \times 3 \times 2!}}\left( {126} \right)$$
$$ \Rightarrow \,10\left( {510} \right) + 45\left( {254} \right) + 120\left( {126} \right)$$
$$ \Rightarrow \,5100 + 11430 + 15120$$
$$ \Rightarrow \,31650$$
Hence, $$31650$$ ways of possibilities of forming such groups are there
Note: Remember, factorial is the continued product of first n natural numbers is called the “n factorial” and it represented by $n! = \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right).....3 \cdot 2 \cdot 1$.
the student has to know the difference between at least and at most. The word “at least” means it will be the minimum value and then it can be exceeded to the maximum. The word “at most” means it is the maximum value and it can’t exceed further, we have to consider the minimum value also.
Formula Used: The formula used to calculate the combination is: $$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$$----(1)
Complete step by step Solution: Given, the 10 students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ i.e., $$n = 10$$
To form a 3 groups A, B and C group has at least one student and the group C has at most 3 students. Whenever,
Case 1: If group C has one student
Number of ways of selecting one student who will be in group C is $${}^{10}{C_1}$$ and the remaining students will be distributed into 2 groups is $$\left( {{2^9} - 2} \right)$$
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right)$$
Case 2: Similarly, if group C has two students
$$ \Rightarrow \,{}^{10}{C_2}\left( {{2^8} - 2} \right)$$
Case 3: Similarly, if group C has three students.
$$ \Rightarrow \,{}^{10}{C_3}\left( {{2^7} - 2} \right)$$
Now, Total number of ways is
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right) + {}^{10}{C_2}\left( {{2^8} - 2} \right) + {}^{10}{C_3}\left( {{2^7} - 2} \right)$$
By the formula of combination
$$ \Rightarrow \,\dfrac{{10!}}{{\left( {10 - 1} \right)!1!}}\left( {512 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 2} \right)!2!}}\left( {256 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 3} \right)!3!}}\left( {128 - 2} \right)$$
$$ \Rightarrow \,\dfrac{{10!}}{{9! \cdot 1!}}\left( {510} \right) + \dfrac{{10!}}{{8! \cdot 2!}}\left( {254} \right) + \dfrac{{10!}}{{7! \cdot 3!}}\left( {126} \right)$$
$$ \Rightarrow \,\dfrac{{10 \times 9!}}{{9!\, \times 1!}}\left( {510} \right) + \dfrac{{10 \times 9 \times 8!}}{{8!\, \times 2!}}\left( {254} \right) + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!\, \times 3 \times 2!}}\left( {126} \right)$$
$$ \Rightarrow \,10\left( {510} \right) + 45\left( {254} \right) + 120\left( {126} \right)$$
$$ \Rightarrow \,5100 + 11430 + 15120$$
$$ \Rightarrow \,31650$$
Hence, $$31650$$ ways of possibilities of forming such groups are there
Note: Remember, factorial is the continued product of first n natural numbers is called the “n factorial” and it represented by $n! = \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right).....3 \cdot 2 \cdot 1$.
the student has to know the difference between at least and at most. The word “at least” means it will be the minimum value and then it can be exceeded to the maximum. The word “at most” means it is the maximum value and it can’t exceed further, we have to consider the minimum value also.
Recently Updated Pages
JEE Advanced Study Plan for the 2025 Aspirants

JEE Advanced 2025 Revision Notes for Chemistry Solutions - Free PDF Download

JEE Advanced 2025 Revision Notes for Differential Calculus - Free PDF Download

Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

JEE Advanced 2025 Revision Notes for Analytical Geometry - Free PDF Download

JEE Advanced 2025 Revision Notes for Trigonometry - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

Top IIT Colleges in India 2025

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

JEE Main 2025: Derivation of Equation of Trajectory in Physics

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
