1/2 mole of helium is contained in a container at STP. How much heat energy is needed to double the pressure of the gas (volume is constant) heat capacity of has is 3J/g/K
(A) 1436
(B) 736
(C) 1638
(D) 5698
Answer
Verified
116.4k+ views
Hint: The pressure of a given mass of gas is directly proportional to the absolute temperature provided that the volume is kept constant. Use that relation to calculate the temperature difference of the two different states of the system (the high pressure state and the stp pressure state). Standard temperature is considered as zero degree Celsius or 273 Kelvin.
Formula used: In this solution we will be using the following formulae;
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
\[Q = nM{c_v}\Delta T\] where \[Q\] is the heat absorbed by a gas,\[M\] is the molar mass,\[n\] is the number of moles of the gas, \[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Complete Step-by-Step solution:
To calculate for heat needed, we must first calculate the temperature necessary for the condition to hold.
Generally, it is known that the pressure of a gas is directly proportional to temperature of the gas provided the volume is held constant. Hence
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
Hence, for the first state, we have
\[{P_1} = k{T_1} = 273k\] (since the standard temperature is 373 K)
\[ \Rightarrow k = \dfrac{{{P_1}}}{{273}}\]
For the second state, we have
\[ \Rightarrow 2{P_1} = k{T_2}\]
Inserting the known \[k\] expression, we have
\[2{P_1} = \left( {\dfrac{{{P_1}}}{{273}}} \right){T_2}\]
\[ \Rightarrow 2 = \dfrac{{{T_2}}}{{273}}\]
Hence, we have
\[{T_2} = 2 \times 273 = 546K\]
Now, the heat required can be given by
\[Q = nM{c_v}\Delta T\] where \[n\] is the number of moles of the gas,\[M\] is the molar mass,\[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Hence, we have
\[Q = \left( {0.5} \right)4\left( 3 \right)\left( {546 - 273} \right)\]
By computation,
\[Q = 1638J\]
The correct option is C
Note: Alternatively, instead for calculating for \[k\] and then using its value in the second state, we could simply divide state 1 by state 2, and hence, we have
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Then by making \[{T_2}\] subject of formula, we have
\[{T_2} = \dfrac{{{P_2}{T_1}}}{{{P_1}}}\]
Hence, by inserting the known values and expressions, we have
\[{T_2} = \dfrac{{2{P_1}\left( {273} \right)}}{{{P_1}}} = 546K\]
Which is identical to what is gotten above.
Formula used: In this solution we will be using the following formulae;
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
\[Q = nM{c_v}\Delta T\] where \[Q\] is the heat absorbed by a gas,\[M\] is the molar mass,\[n\] is the number of moles of the gas, \[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Complete Step-by-Step solution:
To calculate for heat needed, we must first calculate the temperature necessary for the condition to hold.
Generally, it is known that the pressure of a gas is directly proportional to temperature of the gas provided the volume is held constant. Hence
\[P = kT\] where \[P\] is the pressure of an ideal gas at a certain state, \[T\] and is the absolute temperature of the gas at the same state, \[k\] is a proportionality constant.
Hence, for the first state, we have
\[{P_1} = k{T_1} = 273k\] (since the standard temperature is 373 K)
\[ \Rightarrow k = \dfrac{{{P_1}}}{{273}}\]
For the second state, we have
\[ \Rightarrow 2{P_1} = k{T_2}\]
Inserting the known \[k\] expression, we have
\[2{P_1} = \left( {\dfrac{{{P_1}}}{{273}}} \right){T_2}\]
\[ \Rightarrow 2 = \dfrac{{{T_2}}}{{273}}\]
Hence, we have
\[{T_2} = 2 \times 273 = 546K\]
Now, the heat required can be given by
\[Q = nM{c_v}\Delta T\] where \[n\] is the number of moles of the gas,\[M\] is the molar mass,\[{c_v}\] is the specific heat capacity at constant volume and \[\Delta T\] is the difference in temperature after a particular amount of absorbed heat.
Hence, we have
\[Q = \left( {0.5} \right)4\left( 3 \right)\left( {546 - 273} \right)\]
By computation,
\[Q = 1638J\]
The correct option is C
Note: Alternatively, instead for calculating for \[k\] and then using its value in the second state, we could simply divide state 1 by state 2, and hence, we have
\[\dfrac{{{P_1}}}{{{P_2}}} = \dfrac{{{T_1}}}{{{T_2}}}\]
Then by making \[{T_2}\] subject of formula, we have
\[{T_2} = \dfrac{{{P_2}{T_1}}}{{{P_1}}}\]
Hence, by inserting the known values and expressions, we have
\[{T_2} = \dfrac{{2{P_1}\left( {273} \right)}}{{{P_1}}} = 546K\]
Which is identical to what is gotten above.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids