
1g of Mg atoms in the vapour phase absorbs 50.0 kJ of energy. Find the composition of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] formed as a result of absorption of energy. $I{E_1}$ and ${\text{I}}{{\text{E}}_{\text{2}}}$ for Mg are 740 and 1450 ${\text{kJmo}}{{\text{l}}^{{\text{ - 1}}}}$ respectively.
Answer
133.5k+ views
Hint: You know that to remove an electron from an isolated atom, it requires energy. This energy is termed as ionisation energy. The first and second ionization energy is not same here. To form \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] from Mg, the energy required is the sum of this two energies.
Complete step by step answer:
We know that the energy required to convert $M{g^ + }$ and \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions are 740 ${\text{kJmo}}{{\text{l}}^{{\text{ - 1}}}}$ and 1450 ${\text{kJmo}}{{\text{l}}^{{\text{ - 1}}}}$ respectively.
The energy used for Mg to $M{g^ + }$ and \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] conversion is: 740 + 1450 = 2190 ${\text{kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
A mole of Mg is equal to$\dfrac{1}{{24}}$.
We can assume that $x$ grams of $M{g^ + }$ ions and $y$ grams of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions.
$x + y = 1$ (Total mass in 1 grams)
Therefore, moles of $M{g^ + }$ ions = $\dfrac{x}{{24}}$
Mass of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\]ions = $\dfrac{y}{{24}}$
So, the energy absorbed for the formation of $M{g^ + }$ ions = $\dfrac{x}{{24}} \times 740$
The energy absorbed for forming \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions = $\dfrac{y}{{24}} \times 2190$
So, the total energy absorbed (E) = $\left( {\dfrac{x}{{24}} \times 740} \right) + \left( {\dfrac{y}{{24}} \times 2190} \right)$
50 = $\left( {\dfrac{x}{{24}} \times 740} \right) + \left( {\dfrac{y}{{24}} \times 2190} \right)$
$1200 = 740x + 2190y$
$120 = 74x + 219y$
Since $x + y = 1$
x = 1 - y
120 = 74(1 - y) + 219y
120 = 74 - 74y + 219y
120 = 145y + 74
46 = 145y
y = 0.3172
Therefore, the mass of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions is 0.3172g
Percentage of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions = $0.31721 \times 100 = 31.72$
Also, percentage of $M{g^ + }$ ions = 100 – 31.72 = 68.28.
So, the percentage of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions formed is 31.72 %.
Note: You may have noticed that the first ionization enthalpy of magnesium is smaller than the second ionization enthalpy. Reason for this is the difficulty to remove an electron from a positively charged species rather than the neutral atom.
Complete step by step answer:
We know that the energy required to convert $M{g^ + }$ and \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions are 740 ${\text{kJmo}}{{\text{l}}^{{\text{ - 1}}}}$ and 1450 ${\text{kJmo}}{{\text{l}}^{{\text{ - 1}}}}$ respectively.
The energy used for Mg to $M{g^ + }$ and \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] conversion is: 740 + 1450 = 2190 ${\text{kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
A mole of Mg is equal to$\dfrac{1}{{24}}$.
We can assume that $x$ grams of $M{g^ + }$ ions and $y$ grams of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions.
$x + y = 1$ (Total mass in 1 grams)
Therefore, moles of $M{g^ + }$ ions = $\dfrac{x}{{24}}$
Mass of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\]ions = $\dfrac{y}{{24}}$
So, the energy absorbed for the formation of $M{g^ + }$ ions = $\dfrac{x}{{24}} \times 740$
The energy absorbed for forming \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions = $\dfrac{y}{{24}} \times 2190$
So, the total energy absorbed (E) = $\left( {\dfrac{x}{{24}} \times 740} \right) + \left( {\dfrac{y}{{24}} \times 2190} \right)$
50 = $\left( {\dfrac{x}{{24}} \times 740} \right) + \left( {\dfrac{y}{{24}} \times 2190} \right)$
$1200 = 740x + 2190y$
$120 = 74x + 219y$
Since $x + y = 1$
x = 1 - y
120 = 74(1 - y) + 219y
120 = 74 - 74y + 219y
120 = 145y + 74
46 = 145y
y = 0.3172
Therefore, the mass of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions is 0.3172g
Percentage of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions = $0.31721 \times 100 = 31.72$
Also, percentage of $M{g^ + }$ ions = 100 – 31.72 = 68.28.
So, the percentage of \[{\text{M}}{{\text{g}}^{{\text{2 + }}}}\] ions formed is 31.72 %.
Note: You may have noticed that the first ionization enthalpy of magnesium is smaller than the second ionization enthalpy. Reason for this is the difficulty to remove an electron from a positively charged species rather than the neutral atom.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
