A black body emits radiation at the rate $P$ when its temperature is T. At this temperature the wavelength at which the radiation has maximum intensity is $\lambda_{0} .$ If at another temperature $\mathrm{T}^{\prime \prime}$ the power radiated is $\mathrm{P}^{\prime}$ and wavelength at maximum intensity is $\dfrac{\lambda_{0}}{2}$ then
(A) $P^{\prime} T^{\prime}=32 P T$
(B) $P^{\prime} T^{\prime}=16 P T$
(C) $P^{\prime} T^{\prime}=8 P T$
(D) $P^{\prime} T^{\prime}=4 P T$
Answer
Verified
123k+ views
Hint: We should know that the wavelength is the distance between two wave crests, which is the same as the distance between two troughs. The number of waves that pass-through a given point in one second is called the frequency, measured in units of cycles per second called Hertz. As the full spectrum of visible light travels through a prism, the wavelengths separate into the colours of the rainbow because each colour is a different wavelength. Violet has the shortest wavelength, at around 380 nanometres, and red has the longest wavelength, at around 700 nanometres. Gamma rays have the highest energies, the shortest wavelengths, and the highest frequencies. Radio waves, on the other hand, have the lowest energies, longest wavelengths, and lowest frequencies of any type of EM radiation.
Complete step by step answer
From Wien's Displacement Law we know that for a radiating body the product of maximum wavelength radiated $\lambda$ and its temperature T in kelvin is a constant.
$\lambda \times T=\text { Wien's Constant }$
$b=2.898 \times 10^{-3} \mathrm{mK}$
Also, from Stefan-Boltzmann law for radiation from a black body we have Power radiated $P$ is
$P=\varepsilon \sigma A T^{4} \ldots \ldots(2)$
where $\varepsilon$ is emissivity of surface which is $=1$ for a black body, $\sigma$ is Stefan's constant and $A$ is surface area of the radiating object.
At another temperature $T^{\prime}$ we have the expression for the black body
$P^{\prime}=\varepsilon \sigma A\left(T^{\prime}\right)^{4}$Multiplying both sides with $T^{\prime}$, we get
$P^{\prime} T^{\prime}=\varepsilon \sigma A\left(T^{\prime}\right)^{5} \ldots \ldots(5)$
From (1) we have
$\lambda^{\prime} T^{\prime}=b$$\Rightarrow T^{\prime}=\dfrac{b}{\lambda^{\prime}} \ldots \ldots .(6)$
Inserting given value of wavelength at maximum intensity $\lambda^{\prime}=\dfrac{\lambda}{2}$ in (6) we get
${{T}^{\prime }}=\dfrac{b}{\dfrac{\lambda }{2}}$
$\Rightarrow {{T}^{\prime }}=2\dfrac{b}{\lambda }$
Inserting this in RHS of (5) we get
$P^{\prime} T^{\prime}=\varepsilon \sigma A\left(2 \dfrac{b}{\lambda}\right)^{5}$Rewrite RHS as and then using (1)
${{P}^{\prime }}{{T}^{\prime }}=32\left[ \varepsilon \sigma A{{\left( \dfrac{b}{\lambda } \right)}^{4}} \right]\times \left( \dfrac{b}{\lambda } \right)$
${{P}^{\prime }}{{T}^{\prime }}=32\left[ \varepsilon \sigma A{{T}^{4}} \right]\times T$
Now using (2) we get
$P^{\prime} T^{\prime}=32 P T$
Therefore, the correct answer is Option A.
Note: We should know that black-body radiation has a characteristic, continuous frequency spectrum that depends only on the body's temperature, called the Planck spectrum or Planck's law. As the temperature increases past about 500 degrees Celsius, black bodies start to emit significant amounts of visible light. It occurs due to a process called thermal radiation. Thermal energy causes vibration of molecules or atoms, which in turn vibrates the charge distribution in the material, allowing radiation by the above mechanisms. That radiation, for a perfect absorber, follows the blackbody curve. The primary law governing blackbody radiation is the Planck Radiation Law, which governs the intensity of radiation emitted by unit surface area into a fixed direction from the blackbody as a function of wavelength for a fixed temperature. The mathematical function describing the shape is called the Planck function.
Complete step by step answer
From Wien's Displacement Law we know that for a radiating body the product of maximum wavelength radiated $\lambda$ and its temperature T in kelvin is a constant.
$\lambda \times T=\text { Wien's Constant }$
$b=2.898 \times 10^{-3} \mathrm{mK}$
Also, from Stefan-Boltzmann law for radiation from a black body we have Power radiated $P$ is
$P=\varepsilon \sigma A T^{4} \ldots \ldots(2)$
where $\varepsilon$ is emissivity of surface which is $=1$ for a black body, $\sigma$ is Stefan's constant and $A$ is surface area of the radiating object.
At another temperature $T^{\prime}$ we have the expression for the black body
$P^{\prime}=\varepsilon \sigma A\left(T^{\prime}\right)^{4}$Multiplying both sides with $T^{\prime}$, we get
$P^{\prime} T^{\prime}=\varepsilon \sigma A\left(T^{\prime}\right)^{5} \ldots \ldots(5)$
From (1) we have
$\lambda^{\prime} T^{\prime}=b$$\Rightarrow T^{\prime}=\dfrac{b}{\lambda^{\prime}} \ldots \ldots .(6)$
Inserting given value of wavelength at maximum intensity $\lambda^{\prime}=\dfrac{\lambda}{2}$ in (6) we get
${{T}^{\prime }}=\dfrac{b}{\dfrac{\lambda }{2}}$
$\Rightarrow {{T}^{\prime }}=2\dfrac{b}{\lambda }$
Inserting this in RHS of (5) we get
$P^{\prime} T^{\prime}=\varepsilon \sigma A\left(2 \dfrac{b}{\lambda}\right)^{5}$Rewrite RHS as and then using (1)
${{P}^{\prime }}{{T}^{\prime }}=32\left[ \varepsilon \sigma A{{\left( \dfrac{b}{\lambda } \right)}^{4}} \right]\times \left( \dfrac{b}{\lambda } \right)$
${{P}^{\prime }}{{T}^{\prime }}=32\left[ \varepsilon \sigma A{{T}^{4}} \right]\times T$
Now using (2) we get
$P^{\prime} T^{\prime}=32 P T$
Therefore, the correct answer is Option A.
Note: We should know that black-body radiation has a characteristic, continuous frequency spectrum that depends only on the body's temperature, called the Planck spectrum or Planck's law. As the temperature increases past about 500 degrees Celsius, black bodies start to emit significant amounts of visible light. It occurs due to a process called thermal radiation. Thermal energy causes vibration of molecules or atoms, which in turn vibrates the charge distribution in the material, allowing radiation by the above mechanisms. That radiation, for a perfect absorber, follows the blackbody curve. The primary law governing blackbody radiation is the Planck Radiation Law, which governs the intensity of radiation emitted by unit surface area into a fixed direction from the blackbody as a function of wavelength for a fixed temperature. The mathematical function describing the shape is called the Planck function.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line