![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A block of mass $\sqrt 2 \,kg$ is released from the top of an inclined and smooth surface as shown in figure. If thee spring constant of spring is $100\,N{m^{ - 1}}$ and block comes to rest after compressing the spring by $1\,m$, then the distance travelled by the block before it comes to rest is:
![](https://www.vedantu.com/question-sets/523a8002-df12-4820-b3ae-c7ba03f244a78113510627444054413.png)
(A) $1\,m$
(B) $1.25\,m$
(C) $2.5\,m$
(D) $5\,m$
Answer
122.7k+ views
Hint The distance travelled by the block before it comes to rest can be determined by using the statement that the work done by the block will be equal to the potential energy stored by the spring, by equating the two formulas, then the distance is determined.
Useful formula:
The work done by the block will be equal to the potential energy stored by the spring is given by,
$mg\sin \theta \times s = \dfrac{1}{2}k{x^2}$
Where, $m$ is the mass of the block, $g$ is the acceleration due to gravity, $\theta $ is the angle of the inclination, $s$ is the distance travelled by the block, $k$ is the spring constant and $x$ is the compression of the spring.
Complete step by step answer
Given that,
The mass of the block is given as, $m = \sqrt 2 \,kg$,
The spring constant is given as, $k = 100\,N{m^{ - 1}}$,
The compression of the spring is given as, $x = 1\,m$.
Now,
The work done by the block will be equal to the potential energy stored by the spring is given by,
$\Rightarrow$ $mg\sin \theta \times s = \dfrac{1}{2}k{x^2}\,...................\left( 1 \right)$
By substituting the mass of the block, acceleration due to gravity, the angle of the inclination, spring constant and the compression of the spring in the above equation (1), then the above equation (1) is written as,
$\Rightarrow$ $\sqrt 2 \times 10 \times \sin {45^ \circ } \times s = \dfrac{1}{2} \times 100 \times {1^2}$
From the trigonometry, the value of the $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$, then the above equation is written as,
$\sqrt 2 \times 10 \times \dfrac{1}{{\sqrt 2 }} \times s = \dfrac{1}{2} \times 100 \times {1^2}$
By cancelling the same terms in the above equation, then the above equation is written as,
$\Rightarrow$ $10 \times s = \dfrac{1}{2} \times 100 \times {1^2}$
By rearranging the terms in the above equation, then the above equation is written as,
$\Rightarrow$ $s = \dfrac{{1 \times 100 \times {1^2}}}{{2 \times 10}}$
By multiplying the terms in the above equation, then the above equation is written as,
$s = \dfrac{{100}}{{20}}$
By dividing the terms in the above equation, then the above equation is written as,
$\Rightarrow$ $s = 5\,m$
Hence, the option (D) is the correct answer.
Note Energy can neither be created nor destroyed. The energy can be transferred from one form of the energy to the other form of the energy. Here, the potential energy of the block is converted to the spring energy, because the block from the definite height will have the potential energy and then the block compresses the spring.
Useful formula:
The work done by the block will be equal to the potential energy stored by the spring is given by,
$mg\sin \theta \times s = \dfrac{1}{2}k{x^2}$
Where, $m$ is the mass of the block, $g$ is the acceleration due to gravity, $\theta $ is the angle of the inclination, $s$ is the distance travelled by the block, $k$ is the spring constant and $x$ is the compression of the spring.
Complete step by step answer
Given that,
The mass of the block is given as, $m = \sqrt 2 \,kg$,
The spring constant is given as, $k = 100\,N{m^{ - 1}}$,
The compression of the spring is given as, $x = 1\,m$.
Now,
The work done by the block will be equal to the potential energy stored by the spring is given by,
$\Rightarrow$ $mg\sin \theta \times s = \dfrac{1}{2}k{x^2}\,...................\left( 1 \right)$
By substituting the mass of the block, acceleration due to gravity, the angle of the inclination, spring constant and the compression of the spring in the above equation (1), then the above equation (1) is written as,
$\Rightarrow$ $\sqrt 2 \times 10 \times \sin {45^ \circ } \times s = \dfrac{1}{2} \times 100 \times {1^2}$
From the trigonometry, the value of the $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$, then the above equation is written as,
$\sqrt 2 \times 10 \times \dfrac{1}{{\sqrt 2 }} \times s = \dfrac{1}{2} \times 100 \times {1^2}$
By cancelling the same terms in the above equation, then the above equation is written as,
$\Rightarrow$ $10 \times s = \dfrac{1}{2} \times 100 \times {1^2}$
By rearranging the terms in the above equation, then the above equation is written as,
$\Rightarrow$ $s = \dfrac{{1 \times 100 \times {1^2}}}{{2 \times 10}}$
By multiplying the terms in the above equation, then the above equation is written as,
$s = \dfrac{{100}}{{20}}$
By dividing the terms in the above equation, then the above equation is written as,
$\Rightarrow$ $s = 5\,m$
Hence, the option (D) is the correct answer.
Note Energy can neither be created nor destroyed. The energy can be transferred from one form of the energy to the other form of the energy. Here, the potential energy of the block is converted to the spring energy, because the block from the definite height will have the potential energy and then the block compresses the spring.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Chemistry Question Paper with Answer Keys and Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)