A body cools from a temperature $3T$ to $2T$ in 10 minutes. The room temperature is $T$. Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next 10 minutes will be:
(A) $\dfrac{7}{4}T$
(B) $\dfrac{3}{2}T$
(C) $\dfrac{4}{3}T$
(D) $T$
Answer
Verified
123k+ views
Hint: To find the temperature of the body which is cooling with time we use Newton’s law of cooling. We have to assume that the temperature of the surroundings is constant. The body cools down by radiating out the heat energy contained in it.
Formula Used:
The formulae used in the solution are given here.
$\dfrac{{dT}}{{dt}} = k\left( {{T_t} - {T_s}} \right)$ where $k$ is Newton’s cooling constant, ${T_t}$ is the temperature of the body at any time $t$, ${T_s}$ is the temperature of the surrounding.
Complete Step by Step Solution: Newton’s law of cooling describes the rate at which an exposed body changes temperature through radiation which is approximately proportional to the difference between the object’s temperature and its surroundings, provided the difference is small.
According to Newton’s law of cooling, the rate of loss of heat from a body is directly proportional to the difference in the temperature of the body and its surroundings.
$\dfrac{{dT}}{{dt}} = k\left( {{T_t} - {T_s}} \right)$ where $k$ is Newton’s cooling constant, ${T_t}$ is the temperature of the body at any time $t$, ${T_s}$ is the temperature of the surrounding.
On simplifying this law, we get,
$\ln \left( {\dfrac{{{T_2} - {T_1}}}{{{T_1} - T}}} \right) = kt$
It has been given that a body cools from a temperature $3T$ to $2T$ in 10 minutes, when the room temperature is $T$ and Newton's law of cooling is applicable.
For the first 10 minutes,
$\ln \left( {\dfrac{{3T - {T_s}}}{{2T - T}}} \right) = k\left( {10} \right)$
$ \Rightarrow \ln \dfrac{{2T}}{T} = 10k$
Thus, we can write, $\ln 2 = 10k$.—(i)
For the next 10 minutes,
Let the temperature at the end of 10 minutes be $T'$.
$\ln \left( {\dfrac{{2T - {T_s}}}{{T' - T}}} \right) = 10k$
$ \Rightarrow \ln \left( {\dfrac{T}{{T' - T}}} \right) = 10k$-(ii)
Dividing equation (i) by (ii),
$\ln 2 = \ln \left( {\dfrac{T}{{T' - T}}} \right)$
$\dfrac{{\ln 2}}{{\ln \left( {\dfrac{T}{{T' - T}}} \right)}} = \dfrac{{10k}}{{10k}}$
On simplification, we get,
$\dfrac{T}{{T' - T}} = 2$
$ \Rightarrow 2T' = T + 2T = 3T$
The solution of this equation will give us the temperature at the end of 10 minutes, $T' = \dfrac{3}{2}T$.
Hence, the correct answer is Option B.
Note: The limitations of Newton’s Law of Cooling are stated below-
1. The difference in temperature between the body and surroundings must be small.
2. The loss of heat from the body should be by radiation only.
3. The major limitation of Newton’s law of cooling is that the temperature of surroundings must remain constant during the cooling of the body.
Formula Used:
The formulae used in the solution are given here.
$\dfrac{{dT}}{{dt}} = k\left( {{T_t} - {T_s}} \right)$ where $k$ is Newton’s cooling constant, ${T_t}$ is the temperature of the body at any time $t$, ${T_s}$ is the temperature of the surrounding.
Complete Step by Step Solution: Newton’s law of cooling describes the rate at which an exposed body changes temperature through radiation which is approximately proportional to the difference between the object’s temperature and its surroundings, provided the difference is small.
According to Newton’s law of cooling, the rate of loss of heat from a body is directly proportional to the difference in the temperature of the body and its surroundings.
$\dfrac{{dT}}{{dt}} = k\left( {{T_t} - {T_s}} \right)$ where $k$ is Newton’s cooling constant, ${T_t}$ is the temperature of the body at any time $t$, ${T_s}$ is the temperature of the surrounding.
On simplifying this law, we get,
$\ln \left( {\dfrac{{{T_2} - {T_1}}}{{{T_1} - T}}} \right) = kt$
It has been given that a body cools from a temperature $3T$ to $2T$ in 10 minutes, when the room temperature is $T$ and Newton's law of cooling is applicable.
For the first 10 minutes,
$\ln \left( {\dfrac{{3T - {T_s}}}{{2T - T}}} \right) = k\left( {10} \right)$
$ \Rightarrow \ln \dfrac{{2T}}{T} = 10k$
Thus, we can write, $\ln 2 = 10k$.—(i)
For the next 10 minutes,
Let the temperature at the end of 10 minutes be $T'$.
$\ln \left( {\dfrac{{2T - {T_s}}}{{T' - T}}} \right) = 10k$
$ \Rightarrow \ln \left( {\dfrac{T}{{T' - T}}} \right) = 10k$-(ii)
Dividing equation (i) by (ii),
$\ln 2 = \ln \left( {\dfrac{T}{{T' - T}}} \right)$
$\dfrac{{\ln 2}}{{\ln \left( {\dfrac{T}{{T' - T}}} \right)}} = \dfrac{{10k}}{{10k}}$
On simplification, we get,
$\dfrac{T}{{T' - T}} = 2$
$ \Rightarrow 2T' = T + 2T = 3T$
The solution of this equation will give us the temperature at the end of 10 minutes, $T' = \dfrac{3}{2}T$.
Hence, the correct answer is Option B.
Note: The limitations of Newton’s Law of Cooling are stated below-
1. The difference in temperature between the body and surroundings must be small.
2. The loss of heat from the body should be by radiation only.
3. The major limitation of Newton’s law of cooling is that the temperature of surroundings must remain constant during the cooling of the body.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line