Answer
Verified
110.7k+ views
Hint It is given in our question that a body is moving along a circular path of radius r. It is essential to understand that displacement is defined as the shortest distance travelled by the body undergoing this motion. Use this to find the value.
Complete Step By Step Solution
It is given that a body is moving along a circular path of given radius r. Hence , in one revolution it is said to complete a total distance r with an area of \[\pi {r^2}\]. In layman terms distance travelled by the object in a circular motion is said to be it’s circumference. So, when a body completes one full rotation , it is said to have covered a distance of \[2\pi r\].
Now displacement is defined as the shortest path the object takes to reach a point in the reference plane. Now, it is given that the body will complete half the revolution. In a circular motion, the shortest path a body can take from its starting point has to be in a straight line, covering its radius in full. Since the body is said to have travelled only half revolution, the total displacement from the starting point is twice the radius of the circle, \[2r\] and the distance travelled from the starting point is half the circumference of the circle which is \[\pi r\].
Therefore the displacement of the body in half revolution is \[2r\]. Hence , Option (b) is the right answer.
Note In a circular motion, we calculate velocity of the body quite differently from a linear velocity. At a given instance in its circular path, the body is said to make an angle with the reference plane. This angular change is called angular displacement and the velocity undergone by the body is called angular velocity.
Complete Step By Step Solution
It is given that a body is moving along a circular path of given radius r. Hence , in one revolution it is said to complete a total distance r with an area of \[\pi {r^2}\]. In layman terms distance travelled by the object in a circular motion is said to be it’s circumference. So, when a body completes one full rotation , it is said to have covered a distance of \[2\pi r\].
Now displacement is defined as the shortest path the object takes to reach a point in the reference plane. Now, it is given that the body will complete half the revolution. In a circular motion, the shortest path a body can take from its starting point has to be in a straight line, covering its radius in full. Since the body is said to have travelled only half revolution, the total displacement from the starting point is twice the radius of the circle, \[2r\] and the distance travelled from the starting point is half the circumference of the circle which is \[\pi r\].
Therefore the displacement of the body in half revolution is \[2r\]. Hence , Option (b) is the right answer.
Note In a circular motion, we calculate velocity of the body quite differently from a linear velocity. At a given instance in its circular path, the body is said to make an angle with the reference plane. This angular change is called angular displacement and the velocity undergone by the body is called angular velocity.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main