
A body of mass $10kg$ slides along a rough horizontal surface. The coefficient of friction is $\dfrac{1}{{\sqrt 3 }}.$ Taking $g = 10\,\,{\text{m/}}{{\text{s}}^2},$ the least force which acts at an angle of $30^\circ $ to the horizontal is
(A) $25N$
(B) $100N$
(C) $50N$
(D) $\dfrac{{50}}{{\sqrt 3 }}N$
Answer
232.8k+ views
Hint: We are provided with the mass and acceleration due to gravity and use that to find the value of the normal force. After finding the value of the normal force use that in the frictional force formula to get the least frictional force.
Complete step by step answer
Friction force: The friction force is defined as the force exerted by a surface when a body moves across it or makes an effort to move across it.
\[ \Rightarrow {F_f} = \mu N\]
\[{F_f}\] is the frictional force.
\[\mu \] is the frictional coefficient.
$N$ is the normal force between the surfaces.
Mainly, there are two types of frictional forces.
Kinetic friction force: it is the sliding force when an object moves.
Static friction force: it is the force experienced by an object when it makes an effort to move.
The normal force is defined as the product of mass of the object and the gravity due to acceleration. Its unit is Newton. When the object is at rest then,
Normal force is$N = mg$
Normal force on an incline is
$ \Rightarrow N = mg \times \cos \theta $
Where,
$N$ is the normal force between the surfaces
$m$ is the mass
$g$ is the acceleration due to gravity
Given,
The mass of the body, $m = 10kg$
The acceleration due to gravity, $g = 10\,\,{\text{m/}}{{\text{s}}^2},$
The frictional coefficient, $\mu = \dfrac{1}{{\sqrt 3 .}}$
The least force acts at the surface, Angle of incline $\theta = 30^\circ $
We know that the frictional force is
\[ \Rightarrow {F_f} = \mu N\]
Normal force on an incline is
$ \Rightarrow N = mg \times \cos \theta $
Substituting the values,
$ \Rightarrow N = 10 \times 10 \times \cos 30^\circ $
$ \Rightarrow N = 10 \times 10 \times \cos 30^\circ $
$ \Rightarrow N = 86.7N$
Now, the frictional force is
\[ \Rightarrow {F_f} = \mu N\]
Substituting the values,
\[ \Rightarrow {F_f} = \dfrac{1}{{\sqrt 3 }} \times 86.7\]
\[ \Rightarrow {F_f} = 50N\]
Note: The formula for calculating normal force differs according to the condition of the object, whether the object is at rest or motion or exerting upward force or downward force.
Complete step by step answer
Friction force: The friction force is defined as the force exerted by a surface when a body moves across it or makes an effort to move across it.
\[ \Rightarrow {F_f} = \mu N\]
\[{F_f}\] is the frictional force.
\[\mu \] is the frictional coefficient.
$N$ is the normal force between the surfaces.
Mainly, there are two types of frictional forces.
Kinetic friction force: it is the sliding force when an object moves.
Static friction force: it is the force experienced by an object when it makes an effort to move.
The normal force is defined as the product of mass of the object and the gravity due to acceleration. Its unit is Newton. When the object is at rest then,
Normal force is$N = mg$
Normal force on an incline is
$ \Rightarrow N = mg \times \cos \theta $
Where,
$N$ is the normal force between the surfaces
$m$ is the mass
$g$ is the acceleration due to gravity
Given,
The mass of the body, $m = 10kg$
The acceleration due to gravity, $g = 10\,\,{\text{m/}}{{\text{s}}^2},$
The frictional coefficient, $\mu = \dfrac{1}{{\sqrt 3 .}}$
The least force acts at the surface, Angle of incline $\theta = 30^\circ $
We know that the frictional force is
\[ \Rightarrow {F_f} = \mu N\]
Normal force on an incline is
$ \Rightarrow N = mg \times \cos \theta $
Substituting the values,
$ \Rightarrow N = 10 \times 10 \times \cos 30^\circ $
$ \Rightarrow N = 10 \times 10 \times \cos 30^\circ $
$ \Rightarrow N = 86.7N$
Now, the frictional force is
\[ \Rightarrow {F_f} = \mu N\]
Substituting the values,
\[ \Rightarrow {F_f} = \dfrac{1}{{\sqrt 3 }} \times 86.7\]
\[ \Rightarrow {F_f} = 50N\]
Note: The formula for calculating normal force differs according to the condition of the object, whether the object is at rest or motion or exerting upward force or downward force.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

