A body of mass 8 kg is in limiting equilibrium over an incline plane of inclination \[30^\circ \]. If the inclination is made \[60^\circ \] the minimum force required to prevent the body from sliding down is \[\left( {g = 10m/{s^2}} \right)\]
(A) 80 N
(B) \[\dfrac{{80}}{{\sqrt 3 }}N\]
(C) \[\dfrac{{40}}{{\sqrt 3 }}N\]
(D) \[40\sqrt 3 N\]
Answer
Verified
116.4k+ views
Hint: In the second situation, the forces acting on the object parallel to the surface of the incline plane would be friction, weight component along that axis, and that minimum force required to keep it from sliding down. Use the first state to calculate the coefficient of friction which is acting between the mass and the surface of the incline plane.
Formula used: In this solution we will be using the following formulae;
\[f = \mu mg\cos \theta \] where \[f\] is the frictional force acting between the surface of an inclined plane and the block, \[\mu \] is the coefficient of friction, \[m\] is the mass of the block, \[g\] is the acceleration due to gravity and \[\theta \] is the inclination angle.
\[W = mg\] where \[m\] is the mass of the block, \[g\] is the acceleration due to gravity
Complete Step-by-Step solution:
In the first case, the state is in limiting equilibrium, hence, the frictional force is equal to the weight component parallel to the surface. i.e.
\[W\sin \theta = f\]
\[ \Rightarrow mg\sin \theta = \mu mg\cos \theta \] where \[\mu \] is the coefficient of friction, \[m\] is the mass of the block, \[g\] is the acceleration due to gravity and \[\theta \] is the inclination angle.
By inserting the angle and simplifying, we have
\[\sin 30^\circ = \mu \cos 30^\circ \]
\[ \Rightarrow \mu = \dfrac{{\sin 30}}{{\cos 30}} = \dfrac{1}{{\sqrt 3 }}\]
Now, in the second state, the angle was increased to 60 degrees, and a force is required to keep it from falling, then the forces acting up along the surface must be equal to the forces acting downward. Hence
\[W\sin \theta = f + F\] where \[F\] is the additional force required to make the object to not fall
Hence,
\[W\sin \theta = \mu mg\cos \theta + F\]
Then,
\[F = mg\sin 60^\circ - \left( {\dfrac{1}{{\sqrt 3 }}mg\cos 60} \right)\]
\[ \Rightarrow F = mg\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( {\dfrac{1}{{2\sqrt 3 }}mg} \right)\]
Simplifying the expression, we have
\[F = mg\left( {\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{2\sqrt 3 }}} \right) = mg\left( {\dfrac{{3 - 1}}{{2\sqrt 3 }}} \right)\]
Hence, \[F = \dfrac{{mg}}{{\sqrt 3 }} = \dfrac{{8 \times 10}}{{\sqrt 3 }}\]
\[ \Rightarrow F = \dfrac{{80}}{{\sqrt 3 }}N\]
Hence, the correct option is B
Note: For clarity, the limiting equilibrium in the statement means that the friction required to keep the object from moving is reaching maximum, and any slight increase in the weight component will cause a motion. This is why we could use the same coefficient of friction in state 1 and 2.
Formula used: In this solution we will be using the following formulae;
\[f = \mu mg\cos \theta \] where \[f\] is the frictional force acting between the surface of an inclined plane and the block, \[\mu \] is the coefficient of friction, \[m\] is the mass of the block, \[g\] is the acceleration due to gravity and \[\theta \] is the inclination angle.
\[W = mg\] where \[m\] is the mass of the block, \[g\] is the acceleration due to gravity
Complete Step-by-Step solution:
In the first case, the state is in limiting equilibrium, hence, the frictional force is equal to the weight component parallel to the surface. i.e.
\[W\sin \theta = f\]
\[ \Rightarrow mg\sin \theta = \mu mg\cos \theta \] where \[\mu \] is the coefficient of friction, \[m\] is the mass of the block, \[g\] is the acceleration due to gravity and \[\theta \] is the inclination angle.
By inserting the angle and simplifying, we have
\[\sin 30^\circ = \mu \cos 30^\circ \]
\[ \Rightarrow \mu = \dfrac{{\sin 30}}{{\cos 30}} = \dfrac{1}{{\sqrt 3 }}\]
Now, in the second state, the angle was increased to 60 degrees, and a force is required to keep it from falling, then the forces acting up along the surface must be equal to the forces acting downward. Hence
\[W\sin \theta = f + F\] where \[F\] is the additional force required to make the object to not fall
Hence,
\[W\sin \theta = \mu mg\cos \theta + F\]
Then,
\[F = mg\sin 60^\circ - \left( {\dfrac{1}{{\sqrt 3 }}mg\cos 60} \right)\]
\[ \Rightarrow F = mg\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( {\dfrac{1}{{2\sqrt 3 }}mg} \right)\]
Simplifying the expression, we have
\[F = mg\left( {\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{2\sqrt 3 }}} \right) = mg\left( {\dfrac{{3 - 1}}{{2\sqrt 3 }}} \right)\]
Hence, \[F = \dfrac{{mg}}{{\sqrt 3 }} = \dfrac{{8 \times 10}}{{\sqrt 3 }}\]
\[ \Rightarrow F = \dfrac{{80}}{{\sqrt 3 }}N\]
Hence, the correct option is B
Note: For clarity, the limiting equilibrium in the statement means that the friction required to keep the object from moving is reaching maximum, and any slight increase in the weight component will cause a motion. This is why we could use the same coefficient of friction in state 1 and 2.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
Charging and Discharging of Capacitor
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Which of the following is the smallest unit of length class 11 physics JEE_Main
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
Thermodynamics Class 11 Notes CBSE Physics Chapter 11 (Free PDF Download)
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
Ideal and Non-Ideal Solutions Raoult's Law - JEE