![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A capacitor of capacitance $C$ is initially charged to a potential difference of V volt. Now it is connected to a battery of $2V$ volt with opposite polarity. The ratio of heat generated to the final energy stored in the capacitor will be:
$\left( A \right)1.75$
$\left( B \right)2.25$
$\left( C \right)2.5$
$\left( D \right)\dfrac{1}{2}$
Answer
124.2k+ views
Hint: Capacitor is a component that has the capacity to store the energy. It is in the form of electrical charge producing a potential difference across its plates. Calculate the initial and final energy stored in the capacitor and use that to determine the heat generated in the capacitor. Then find the ratio between the two components.
Formula used:
$U = \dfrac{1}{2}C{V^2}$
$U$ is the energy stored, $C$ is the capacitance.
Complete step by step answer:
Capacitor is a component that has the capacity to store the energy. It is in the form of electrical charge producing a potential difference across its plates. Electrons flowing onto the plates are known as charging of capacitors. The potential difference depends on the number of charges present on the plates of the capacitor.
If the DC source is one in a resistance containing circuit, then the current will attain its maximum steady value in zero-time interval. A resistor circuit containing both inductor and capacitor, the current will take some time to attain its maximum peak value. If the battery is removed from the circuit which is having a capacitor or an inductor, then the current takes some time to decay to zero value.
Resonance occurs in a circuit that is when the inductor, capacitor and resistor are connected in series when the supply frequency causes the voltage across the inductor and capacitor to be equal. Q factor will be affected if there is resistive loss. Q factor is a unit less dimensionless quantity.
The initial and final charge is given by
${q_i} = CV$
${q_f} = 2CV$
In this case the battery is connected with opposite polarity hence,
$\vartriangle q = {q_f} - \left( { - {q_i}} \right) = 2CV + CV = 3CV$
Initial and final energy stored in the capacitor
$\Rightarrow {U_i} = \dfrac{1}{2}C{V^2}$
$\Rightarrow {U_f} = \dfrac{1}{2}C{\left( {2V} \right)^2} = 2C{V^2}$
Then the heat generated is $H = \left( {{U_f} - {U_i}} \right) - \vartriangle q\left( {2V} \right)$
$\Rightarrow H = 2C{V^2} - \dfrac{1}{2}C{V^2} - 6C{V^2} = \dfrac{9}{2}C{V^2}$
Thus, the ratio $\dfrac{H}{{{U_f}}} = \dfrac{{9C{V^2}}}{{2\left( {C{V^2}} \right)}} = 2.25$
Hence option B is the correct option.
Note: Electron flowing onto the plates is known as charging of capacitor. The potential difference depends on the number of charges present on the plates of the capacitor. If the battery is removed from the circuit which is having a capacitor or an inductor, then the current takes some time to decay to zero value.
Formula used:
$U = \dfrac{1}{2}C{V^2}$
$U$ is the energy stored, $C$ is the capacitance.
Complete step by step answer:
Capacitor is a component that has the capacity to store the energy. It is in the form of electrical charge producing a potential difference across its plates. Electrons flowing onto the plates are known as charging of capacitors. The potential difference depends on the number of charges present on the plates of the capacitor.
If the DC source is one in a resistance containing circuit, then the current will attain its maximum steady value in zero-time interval. A resistor circuit containing both inductor and capacitor, the current will take some time to attain its maximum peak value. If the battery is removed from the circuit which is having a capacitor or an inductor, then the current takes some time to decay to zero value.
Resonance occurs in a circuit that is when the inductor, capacitor and resistor are connected in series when the supply frequency causes the voltage across the inductor and capacitor to be equal. Q factor will be affected if there is resistive loss. Q factor is a unit less dimensionless quantity.
The initial and final charge is given by
${q_i} = CV$
${q_f} = 2CV$
In this case the battery is connected with opposite polarity hence,
$\vartriangle q = {q_f} - \left( { - {q_i}} \right) = 2CV + CV = 3CV$
Initial and final energy stored in the capacitor
$\Rightarrow {U_i} = \dfrac{1}{2}C{V^2}$
$\Rightarrow {U_f} = \dfrac{1}{2}C{\left( {2V} \right)^2} = 2C{V^2}$
Then the heat generated is $H = \left( {{U_f} - {U_i}} \right) - \vartriangle q\left( {2V} \right)$
$\Rightarrow H = 2C{V^2} - \dfrac{1}{2}C{V^2} - 6C{V^2} = \dfrac{9}{2}C{V^2}$
Thus, the ratio $\dfrac{H}{{{U_f}}} = \dfrac{{9C{V^2}}}{{2\left( {C{V^2}} \right)}} = 2.25$
Hence option B is the correct option.
Note: Electron flowing onto the plates is known as charging of capacitor. The potential difference depends on the number of charges present on the plates of the capacitor. If the battery is removed from the circuit which is having a capacitor or an inductor, then the current takes some time to decay to zero value.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Physics Average Value and RMS Value JEE Main 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)