A car is moving with speed 30 m/s on a circular path of radius 500m. Its speed is increasing at the rate of $2 m/{sec^2}$. What is the acceleration of the car?
A) 9.8 m/sec$^2$
B) 1.8 m/sec$^2$
C) 2 m/sec$^2$
D) 2.7 m/sec$^2$
Answer
Verified
123k+ views
Hint: The acceleration of an object moving on a circular path is the vector sum of tangential acceleration and centripetal acceleration. The acceleration in circular motion, which changes the magnitude of velocity, is the tangential acceleration.
Complete step by step solution:
The radius of the circular path along which the car is moving is 500 m. Its velocity is 30 m/s. Since the car is moving on a circular path, it has two components of acceleration. One is tangential which acts tangent to the circular path and another is centripetal which acts towards the center and allows the car to move on a circular path. It is given that the speed is increasing at the rate 0f 2 m/sec$^2$. This is the tangential acceleration of the car. Let us denote it as a$_t$.
${a_t} = 2$ m/sec$^2$
The centripetal component of acceleration can be found by using the following formula,
${a_c} = \dfrac{{{v^2}}}{r}$ …equation (1)
On substituting the values of the velocity and the radius of circular path in equation (1), we obtain,
${a_c} = \dfrac{{{{\left( {30} \right)}^2}}}{{500}} = \dfrac{{900}}{{500}} = 1.8$ m/sec$^2$
Now, the total acceleration can be found by taking the vector sum of both the components of acceleration. The tangential and centripetal acceleration are at right angles to each other because the tangential acceleration is along the tangent to the circular path and centripetal acceleration is along the radius. Therefore the cosine of the angle between the two components of acceleration is 0. The total acceleration is as follows,
$a = \sqrt {a_t^2 + a_c^2} = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1.8} \right)}^2}} = \sqrt {7.24} = 2.7$ m/sec$^2$
Hence, the total acceleration of the car is 2.7 m/sec$^2$.
Therefore, the correct answer is option (D).
Note: When the magnitude of velocity is not changing while moving on a circular path, its tangential acceleration is zero. Since the direction of velocity is changing at every point, the acceleration is never non-zero, even with constant magnitude.
Complete step by step solution:
The radius of the circular path along which the car is moving is 500 m. Its velocity is 30 m/s. Since the car is moving on a circular path, it has two components of acceleration. One is tangential which acts tangent to the circular path and another is centripetal which acts towards the center and allows the car to move on a circular path. It is given that the speed is increasing at the rate 0f 2 m/sec$^2$. This is the tangential acceleration of the car. Let us denote it as a$_t$.
${a_t} = 2$ m/sec$^2$
The centripetal component of acceleration can be found by using the following formula,
${a_c} = \dfrac{{{v^2}}}{r}$ …equation (1)
On substituting the values of the velocity and the radius of circular path in equation (1), we obtain,
${a_c} = \dfrac{{{{\left( {30} \right)}^2}}}{{500}} = \dfrac{{900}}{{500}} = 1.8$ m/sec$^2$
Now, the total acceleration can be found by taking the vector sum of both the components of acceleration. The tangential and centripetal acceleration are at right angles to each other because the tangential acceleration is along the tangent to the circular path and centripetal acceleration is along the radius. Therefore the cosine of the angle between the two components of acceleration is 0. The total acceleration is as follows,
$a = \sqrt {a_t^2 + a_c^2} = \sqrt {{{\left( 2 \right)}^2} + {{\left( {1.8} \right)}^2}} = \sqrt {7.24} = 2.7$ m/sec$^2$
Hence, the total acceleration of the car is 2.7 m/sec$^2$.
Therefore, the correct answer is option (D).
Note: When the magnitude of velocity is not changing while moving on a circular path, its tangential acceleration is zero. Since the direction of velocity is changing at every point, the acceleration is never non-zero, even with constant magnitude.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line