
A certain nuclei has a half- life period of 30 min, then a sample containing 600 atoms is allowed to decay for 90 min, how many atoms will remain?
(A) 200 atoms
(B) 450 atoms
(C) 75 atoms
(D) 150 atoms
Answer
133.8k+ views
Hint - To solve this question, first we have to understand the term half-life and then we will learn about the decaying process and its terms. Lastly, we will be calculating the answer with the help of the half-life formula.
Half-life is defined as the time required for a quantity of substance to reduce to half of its initial value.Commonly used to describe how spontaneously unstable atoms undergo, or how long stable atoms survive, radioactive decay.
Complete answer:
> Radioactive decay – Radioactive decay (also known as nuclear decay) is defined as the spontaneous breakdown of an atomic nucleus resulting in the release of energy and matter from the nucleus. A material that contains an unstable nuclei is said to be radioactive.
> It has three types which are alpha, decay, gamma decay and beta decay. Each one involves the emission of one or more photons (or particles).
Now let us Calculate our answer with the half-life formula –
\[N\left( t \right) = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{\dfrac{1}{2}}}}}}}\]
$N\left( t \right) = $ quantity of the substance remaining
${N_0} = $ initial quantity of the substance
$t = $ time elapsed
${t_{\dfrac{1}{2}}} = $ half-life of the substance
$n = \dfrac{{total\,time}}{{half - life\,period}} = \dfrac{{90}}{{30}} = 3$
$N = {N_0} \times {\left( {\dfrac{1}{2}} \right)^n}$
$ = 600 \times {\left( {\dfrac{1}{2}} \right)^3}$
$ = \dfrac{{600}}{8}$
$ = 75$ atoms
So, the correct answer is option C. 75 atoms
Note – Radioactive decay is random (i.e. stochastic) at the single atom level. According to the quantum theory, it is impossible to predict the decay time of a particular atom, regardless of its existence. However, when we talk about a significant number of identical atoms, the overall decay rate can be expressed by decay constant or as half-life.
Half-life is defined as the time required for a quantity of substance to reduce to half of its initial value.Commonly used to describe how spontaneously unstable atoms undergo, or how long stable atoms survive, radioactive decay.
Complete answer:
> Radioactive decay – Radioactive decay (also known as nuclear decay) is defined as the spontaneous breakdown of an atomic nucleus resulting in the release of energy and matter from the nucleus. A material that contains an unstable nuclei is said to be radioactive.
> It has three types which are alpha, decay, gamma decay and beta decay. Each one involves the emission of one or more photons (or particles).
Now let us Calculate our answer with the half-life formula –
\[N\left( t \right) = {N_0}{\left( {\dfrac{1}{2}} \right)^{\dfrac{t}{{{t_{\dfrac{1}{2}}}}}}}\]
$N\left( t \right) = $ quantity of the substance remaining
${N_0} = $ initial quantity of the substance
$t = $ time elapsed
${t_{\dfrac{1}{2}}} = $ half-life of the substance
$n = \dfrac{{total\,time}}{{half - life\,period}} = \dfrac{{90}}{{30}} = 3$
$N = {N_0} \times {\left( {\dfrac{1}{2}} \right)^n}$
$ = 600 \times {\left( {\dfrac{1}{2}} \right)^3}$
$ = \dfrac{{600}}{8}$
$ = 75$ atoms
So, the correct answer is option C. 75 atoms
Note – Radioactive decay is random (i.e. stochastic) at the single atom level. According to the quantum theory, it is impossible to predict the decay time of a particular atom, regardless of its existence. However, when we talk about a significant number of identical atoms, the overall decay rate can be expressed by decay constant or as half-life.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Classification of Drugs

Chlorobenzene can be prepared by reacting aniline with class 12 chemistry JEE_Main

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
