A chain of mass $m$ is attached to point A and B of two fixed walls as shown in the figure. Find the tension in the chain at A.
A) $\dfrac{1}{2}mg\cos \theta $
B) $mg\sin \theta $
C) $\dfrac{1}{2}mg$ $\mathrm{cosec}\theta $
D) $mg\tan \theta $
Answer
Verified
122.4k+ views
Hint: In the given setup, the forces acting on the chain are the tension and the weight of the chain. Here the weight of the chain will be directed downwards. By symmetry, the tension at A and B will be equal and will be directed along the length of the chain and so will have a horizontal component and a vertical component. The force balance equation in the vertical direction will provide us with the tension at A.
Complete step by step answer:
Step 1: Sketch a free body diagram of the chain and depict the forces acting on the chain.
The above diagram represents the free body diagram of the chain.
As seen from the figure the weight of the body $W = mg$ is directed downwards at the point C. At points A and B, the tension $T$ is directed along the length of the chain making an angle $\theta $ with the horizontal.
Step 2: Resolve the tension at A and B into its horizontal component and its vertical component.
The above figure shows the resolution of the tension $T$ into its horizontal component $T\cos \theta $ and its vertical component $T\sin \theta $ .
So the forces acting in the vertical direction are the weight of the chain, the vertical components of tension at A and B.
The forces acting in the horizontal direction are the horizontal components of tension at A and B.
Step 3: Express the force balance equation in the vertical direction.
The force balance equation in the vertical direction can be expressed as
$T\sin \theta + T\sin \theta = mg$ ------------- (1)
$ \Rightarrow 2T\sin \theta = mg$
And finally, we have $T = \dfrac{{mg}}{{2\sin \theta }} = \dfrac{1}{2}mg$ $\mathrm{cosec}\theta $
So the tension at A is obtained as $T = \dfrac{1}{2}mg$ $\mathrm{cosec}\theta $
So the correct option is C.
Note: The force balance equation in the vertical direction is obtained by expressing the total forces acting on the chain i.e., $T\sin \theta + T\sin \theta - mg = 0$ . The weight has a direction opposite to that of the vertical components of the tension at A and B. We take the upward direction to be positive and so weight is negative.
Complete step by step answer:
Step 1: Sketch a free body diagram of the chain and depict the forces acting on the chain.
The above diagram represents the free body diagram of the chain.
As seen from the figure the weight of the body $W = mg$ is directed downwards at the point C. At points A and B, the tension $T$ is directed along the length of the chain making an angle $\theta $ with the horizontal.
Step 2: Resolve the tension at A and B into its horizontal component and its vertical component.
The above figure shows the resolution of the tension $T$ into its horizontal component $T\cos \theta $ and its vertical component $T\sin \theta $ .
So the forces acting in the vertical direction are the weight of the chain, the vertical components of tension at A and B.
The forces acting in the horizontal direction are the horizontal components of tension at A and B.
Step 3: Express the force balance equation in the vertical direction.
The force balance equation in the vertical direction can be expressed as
$T\sin \theta + T\sin \theta = mg$ ------------- (1)
$ \Rightarrow 2T\sin \theta = mg$
And finally, we have $T = \dfrac{{mg}}{{2\sin \theta }} = \dfrac{1}{2}mg$ $\mathrm{cosec}\theta $
So the tension at A is obtained as $T = \dfrac{1}{2}mg$ $\mathrm{cosec}\theta $
So the correct option is C.
Note: The force balance equation in the vertical direction is obtained by expressing the total forces acting on the chain i.e., $T\sin \theta + T\sin \theta - mg = 0$ . The weight has a direction opposite to that of the vertical components of the tension at A and B. We take the upward direction to be positive and so weight is negative.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line