A convex lens and convex mirror are placed co axially and separated by distance d. The focal length of both is \[20\,\,cm\] each. A point object is placed at a distance \[30\,\,cm\] from the lens as shown. Then the value of d so that image on the object itself is
A) $10\,\,cm$
B) \[60\,\,cm\]
C) \[30\,\,cm\]
D) \[20\,\,cm\]
Answer
Verified
116.4k+ views
Hint:- The above problem can be solved using the formula derived from the object image and focal distance relationship formulas of the convex lens and the convex mirror of the same focal length. The formula for the focal length of the lens and the mirror is used.
Useful formula:
The distance of the value $d$;
\[\dfrac{1}{d} = \dfrac{1}{f}\]
Where, the $d$ is the distance between the convex lens and convex mirror, $f$ is the focal length of the convex mirror.
Complete step by step solution:
The data given in the problem is;
Focal length of the convex lens is, ${f_1} = 20\,\,cm$.
Focal length of the convex mirror is, ${f_2} = 20\,\,cm$
Distance of the image placed from the image is, ${u_1} = 30\,\,cm$
At convex lens;
$\dfrac{1}{{{f_1}}} = \dfrac{1}{{{v_1}}} + \dfrac{1}{{{u_1}}}$
Substituting the value of focal length and the object distance from the lens
$
\dfrac{1}{{20}} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{30}} \\
\dfrac{1}{{20}} - \dfrac{1}{{30}} = \dfrac{1}{{{d_i}}} \\
$
Where, ${d_i}$ denotes the distance of the image at convex lens.
\[\dfrac{1}{{{d_i}}} = \dfrac{1}{{60}}\]
At convex mirror:
$\dfrac{1}{{{f_2}}} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{{u_o}}}$
Substitutes the values of the focal length and the image distance;
$
\dfrac{1}{{20}} = \dfrac{1}{{60}} + \dfrac{1}{{{d_o}}} \\
\dfrac{1}{{20}} - \dfrac{1}{{60}} = \dfrac{1}{{{d_o}}} \\
$
Where, ${d_o}$ denotes the distance of the object at convex mirror.
\[\dfrac{1}{{{d_o}}} = \dfrac{1}{{30}}\]
The distance of the value $d$;
\[\dfrac{1}{d} = \dfrac{1}{f}\]
That is
\[
\dfrac{1}{d} = \dfrac{1}{f} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{{d_o}}} \\
\dfrac{1}{d} = \dfrac{1}{{60}} + \dfrac{1}{{30}} \\
\dfrac{1}{d} = \dfrac{{90}}{{1800}} \\
d = 20\,\,cm \\
\]
Therefore, the value of the $d$ is 20 cm.
Hence the option (D), \[d = 20\,\,cm\] is the correct answer.
Note: Image distance denotes that when the image is created then the distance between pole and image is known image distance. Focal length is the interval between pole and the principal focus of the mirror.
Useful formula:
The distance of the value $d$;
\[\dfrac{1}{d} = \dfrac{1}{f}\]
Where, the $d$ is the distance between the convex lens and convex mirror, $f$ is the focal length of the convex mirror.
Complete step by step solution:
The data given in the problem is;
Focal length of the convex lens is, ${f_1} = 20\,\,cm$.
Focal length of the convex mirror is, ${f_2} = 20\,\,cm$
Distance of the image placed from the image is, ${u_1} = 30\,\,cm$
At convex lens;
$\dfrac{1}{{{f_1}}} = \dfrac{1}{{{v_1}}} + \dfrac{1}{{{u_1}}}$
Substituting the value of focal length and the object distance from the lens
$
\dfrac{1}{{20}} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{30}} \\
\dfrac{1}{{20}} - \dfrac{1}{{30}} = \dfrac{1}{{{d_i}}} \\
$
Where, ${d_i}$ denotes the distance of the image at convex lens.
\[\dfrac{1}{{{d_i}}} = \dfrac{1}{{60}}\]
At convex mirror:
$\dfrac{1}{{{f_2}}} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{{u_o}}}$
Substitutes the values of the focal length and the image distance;
$
\dfrac{1}{{20}} = \dfrac{1}{{60}} + \dfrac{1}{{{d_o}}} \\
\dfrac{1}{{20}} - \dfrac{1}{{60}} = \dfrac{1}{{{d_o}}} \\
$
Where, ${d_o}$ denotes the distance of the object at convex mirror.
\[\dfrac{1}{{{d_o}}} = \dfrac{1}{{30}}\]
The distance of the value $d$;
\[\dfrac{1}{d} = \dfrac{1}{f}\]
That is
\[
\dfrac{1}{d} = \dfrac{1}{f} = \dfrac{1}{{{d_i}}} + \dfrac{1}{{{d_o}}} \\
\dfrac{1}{d} = \dfrac{1}{{60}} + \dfrac{1}{{30}} \\
\dfrac{1}{d} = \dfrac{{90}}{{1800}} \\
d = 20\,\,cm \\
\]
Therefore, the value of the $d$ is 20 cm.
Hence the option (D), \[d = 20\,\,cm\] is the correct answer.
Note: Image distance denotes that when the image is created then the distance between pole and image is known image distance. Focal length is the interval between pole and the principal focus of the mirror.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025