A force F acting on an object varies with distance x as shown in figure. The force is in N and x in m. The work done by the force in moving the object from $x = 0{\text{ to }}x = 6m$is:
(A) $13.5{\text{ J}}$
(B) $10{\text{ J}}$
(C) $15{\text{ J}}$
(D) $20{\text{ J}}$
Answer
Verified
122.7k+ views
Hint: Work is said to be done when a force produces motion in an object. The work done can be defined as the product of the force F and the displacement produced in the object, x. In a graphical form, F and x can be multiplied, and the area gives us the total value of the work done.
Complete step by step answer:
In a graphical representation of F vs x, we can integrate the curve and/or find the area enclosed between the two quantities.
This is the equivalent of multiplying in both quantities.
So, In the given graph we can divide the complex shape formed, into 2 simple shapes namely: A rectangle and a triangle.
Finding out areas of both these figures and adding them gives the value of total work done.
Area of triangle, ${A_1} = \dfrac{1}{2}bh$
From the graph, $b = 6 - 3 = 3$
$h = 3$
$\therefore {A_1} = \dfrac{1}{2} \times 3 \times 3$
${A_1} = 4.5Nm$
Now, Area of rectangle (square here)
${A_2} = {a^2}$
Where the side length, $a = 3$
${A_2} = {3^2}$
${A_2} = 9Nm$
The total work done, W is defined as:
$W = {A_1} + {A_2}$
$W = 4.5 + 9$
$W = 13.5Nm{\text{ or }}13.5J$
The correct option is (A).
Additional Information
Work done is highly dependent on the displacement of the body, no matter how much force is applied, if displacement or deformation of the body is zero, work done remains zero. It is a scalar quantity, but it is also a dot product of two vector quantities.
Note: If the shapes are given in forms of functions, then the work done can be calculated by integrating the function and applying limits, and adding up all the integrals. Even this question can be solved as an integral, but applying the formula for area simple shapes makes it easier to solve.
Complete step by step answer:
In a graphical representation of F vs x, we can integrate the curve and/or find the area enclosed between the two quantities.
This is the equivalent of multiplying in both quantities.
So, In the given graph we can divide the complex shape formed, into 2 simple shapes namely: A rectangle and a triangle.
Finding out areas of both these figures and adding them gives the value of total work done.
Area of triangle, ${A_1} = \dfrac{1}{2}bh$
From the graph, $b = 6 - 3 = 3$
$h = 3$
$\therefore {A_1} = \dfrac{1}{2} \times 3 \times 3$
${A_1} = 4.5Nm$
Now, Area of rectangle (square here)
${A_2} = {a^2}$
Where the side length, $a = 3$
${A_2} = {3^2}$
${A_2} = 9Nm$
The total work done, W is defined as:
$W = {A_1} + {A_2}$
$W = 4.5 + 9$
$W = 13.5Nm{\text{ or }}13.5J$
The correct option is (A).
Additional Information
Work done is highly dependent on the displacement of the body, no matter how much force is applied, if displacement or deformation of the body is zero, work done remains zero. It is a scalar quantity, but it is also a dot product of two vector quantities.
Note: If the shapes are given in forms of functions, then the work done can be calculated by integrating the function and applying limits, and adding up all the integrals. Even this question can be solved as an integral, but applying the formula for area simple shapes makes it easier to solve.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line