Answer
Verified
110.4k+ views
Hint: The container holds the hydrogen gas, gas A, and gas B at the same pressure and temperature. Since the gas is held in the same container thus volume would be the same. If the pressure, temperature, and volume remain constant the number of moles for all the gases would be equal. We can now calculate the molar mass of the gas A and B.
Complete step by step solution:
For the ideal gas equation establishes the relation between the pressure, absolute temperature, gas constant, number of moles, and volume as shown below,
$\text{PV = nRT}$
We know that the number of moles is the ratio of mass to the molar mass. We get,
$\text{n = }\dfrac{\text{W}}{\text{M}}$
Let’s substitute the values we get,
$\begin{align}
& \text{PV = }\left( \dfrac{\text{W}}{\text{M}} \right)\text{ R T} \\
& \Rightarrow \dfrac{\text{W}}{\text{M}}=\text{ }\dfrac{\text{P V}}{\text{R T}} \\
\end{align}$
The volume of the container, temperature, and pressure are the same for all the gases.
Therefore, the number of moles is a constant term.
$\dfrac{\text{W}}{\text{M}}\text{ = }\dfrac{\text{P V}}{\text{R T}}=\text{Constant}$
The hydrogen gas is filled in the container and the x moles of hydrogen gas are present. If the same container is filled with gas A and gas B then both will contain the same number of moles.
The number of moles of the gas A and gas B will be equal to the moles of the hydrogen gas.
\[\begin{matrix}
\text{No}\text{.of moles of }{{\text{H}}_{\text{2}}}\text{ gas} & = & \text{No}\text{.of moles of A gas} & = & \text{No}\text{.of moles of B gas} \\
\dfrac{{{\text{W}}_{{{\text{H}}_{\text{2}}}}}}{{{\text{M}}_{{{\text{H}}_{\text{2}}}}}} & = & \dfrac{{{\text{W}}_{\text{A}}}}{{{\text{M}}_{\text{A}}}} & = & \dfrac{{{\text{W}}_{\text{B}}}}{{{\text{M}}_{\text{B}}}} \\
\dfrac{40\text{ }}{2\text{ g mo}{{\text{l}}^{\text{-1}}}} & = & \dfrac{880\text{ g}}{{{\text{M}}_{\text{A}}}} & = & \dfrac{560\text{ g}}{{{\text{M}}_{\text{B}}}} \\
\end{matrix}\]
Let’s simply for the molar mass of A, we get
\[\begin{align}
& {{\text{M}}_{\text{A}}}\text{= 880 g }\!\!\times\!\!\text{ }\dfrac{\text{2 g mo}{{\text{l}}^{\text{-1}}}}{\text{40 g}} \\
& \text{ = }\dfrac{\text{1760}}{\text{40}}\text{ g mo}{{\text{l}}^{\text{-1}}} \\
& \text{ }{{\text{M}}_{\text{A}}}\text{= 44 g mo}{{\text{l}}^{\text{-1}}} \\
\end{align}\]
Let’s calculate the molecular weight of the B.
\[\begin{align}
& {{\text{M}}_{\text{B}}}\text{= 560 g }\!\!\times\!\!\text{ }\dfrac{\text{2 g mo}{{\text{l}}^{\text{-1}}}}{\text{40 g}} \\
& \text{ = }\dfrac{\text{1120}}{\text{40}}\text{ g mo}{{\text{l}}^{\text{-1}}} \\
& \text{ }{{\text{M}}_{\text{B}}}\text{= 28 g mo}{{\text{l}}^{\text{-1}}} \\
\end{align}\]
Therefore, the molecular weight of A gas is \[\text{44 g mo}{{\text{l}}^{\text{-1}}}\] and the molecular weight of B gas is \[\text{28 g mo}{{\text{l}}^{\text{-1}}}\].
Hence the relative molar mass are, $\text{A}\to \text{44 , B}\to \text{28}$
Hence, (A) is the correct option.
Note: We are considering the same container throughout the problem. Therefore, the volume of the gas occupied will always be the same. Since we are considering the same temperature, pressure on the container, the number of moles would be the same too. This is also at the STP condition. This is standard temperature pressure, where pressure is $\text{1}{{\text{0}}^{\text{5}}}\text{ Pa}$ and temperature of $\text{273}\text{.15 K}$.
Complete step by step solution:
For the ideal gas equation establishes the relation between the pressure, absolute temperature, gas constant, number of moles, and volume as shown below,
$\text{PV = nRT}$
We know that the number of moles is the ratio of mass to the molar mass. We get,
$\text{n = }\dfrac{\text{W}}{\text{M}}$
Let’s substitute the values we get,
$\begin{align}
& \text{PV = }\left( \dfrac{\text{W}}{\text{M}} \right)\text{ R T} \\
& \Rightarrow \dfrac{\text{W}}{\text{M}}=\text{ }\dfrac{\text{P V}}{\text{R T}} \\
\end{align}$
The volume of the container, temperature, and pressure are the same for all the gases.
Therefore, the number of moles is a constant term.
$\dfrac{\text{W}}{\text{M}}\text{ = }\dfrac{\text{P V}}{\text{R T}}=\text{Constant}$
The hydrogen gas is filled in the container and the x moles of hydrogen gas are present. If the same container is filled with gas A and gas B then both will contain the same number of moles.
The number of moles of the gas A and gas B will be equal to the moles of the hydrogen gas.
\[\begin{matrix}
\text{No}\text{.of moles of }{{\text{H}}_{\text{2}}}\text{ gas} & = & \text{No}\text{.of moles of A gas} & = & \text{No}\text{.of moles of B gas} \\
\dfrac{{{\text{W}}_{{{\text{H}}_{\text{2}}}}}}{{{\text{M}}_{{{\text{H}}_{\text{2}}}}}} & = & \dfrac{{{\text{W}}_{\text{A}}}}{{{\text{M}}_{\text{A}}}} & = & \dfrac{{{\text{W}}_{\text{B}}}}{{{\text{M}}_{\text{B}}}} \\
\dfrac{40\text{ }}{2\text{ g mo}{{\text{l}}^{\text{-1}}}} & = & \dfrac{880\text{ g}}{{{\text{M}}_{\text{A}}}} & = & \dfrac{560\text{ g}}{{{\text{M}}_{\text{B}}}} \\
\end{matrix}\]
Let’s simply for the molar mass of A, we get
\[\begin{align}
& {{\text{M}}_{\text{A}}}\text{= 880 g }\!\!\times\!\!\text{ }\dfrac{\text{2 g mo}{{\text{l}}^{\text{-1}}}}{\text{40 g}} \\
& \text{ = }\dfrac{\text{1760}}{\text{40}}\text{ g mo}{{\text{l}}^{\text{-1}}} \\
& \text{ }{{\text{M}}_{\text{A}}}\text{= 44 g mo}{{\text{l}}^{\text{-1}}} \\
\end{align}\]
Let’s calculate the molecular weight of the B.
\[\begin{align}
& {{\text{M}}_{\text{B}}}\text{= 560 g }\!\!\times\!\!\text{ }\dfrac{\text{2 g mo}{{\text{l}}^{\text{-1}}}}{\text{40 g}} \\
& \text{ = }\dfrac{\text{1120}}{\text{40}}\text{ g mo}{{\text{l}}^{\text{-1}}} \\
& \text{ }{{\text{M}}_{\text{B}}}\text{= 28 g mo}{{\text{l}}^{\text{-1}}} \\
\end{align}\]
Therefore, the molecular weight of A gas is \[\text{44 g mo}{{\text{l}}^{\text{-1}}}\] and the molecular weight of B gas is \[\text{28 g mo}{{\text{l}}^{\text{-1}}}\].
Hence the relative molar mass are, $\text{A}\to \text{44 , B}\to \text{28}$
Hence, (A) is the correct option.
Note: We are considering the same container throughout the problem. Therefore, the volume of the gas occupied will always be the same. Since we are considering the same temperature, pressure on the container, the number of moles would be the same too. This is also at the STP condition. This is standard temperature pressure, where pressure is $\text{1}{{\text{0}}^{\text{5}}}\text{ Pa}$ and temperature of $\text{273}\text{.15 K}$.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main