A hot body placed in a surrounding of temperature ${T_0}$.its temperature at $t = 0$ in ${T_1}$.the specific heat capacity of the body is $s$and its mass is $m$.Assume Newton's law of cooling to be valid. Find:
$(A)$ The measurement head that the body can lose and
$(B)$ The time starting from $t = 0$ in which it will lose $50\% $ of this maximum heat.
Answer
Verified
116.7k+ views
Hint: We understand the maximum temperature and temperature rate here, so we measure the cooling rate by dividing each temperature data point by its corresponding time data point, then average all the responses to achieve a cooling rate.
Formula used:
This expression represents Newton’s law of cooling. It can be derived directly from Stefan’s law,
\[\dfrac{{d\theta }}{{dt}} = {\text{ }} - k[q{\text{ }}-{\text{ }}{{\text{q}}_s}]\]
Where,
$q$and ${q_s}$ are temperatures corresponding to objects and surroundings.
The heat is transferred more rapidly as the body temperature changes. Newton’
\[{q_f}\; = {\text{ }}{q_0}\; + {\text{ }}({q_i}\;-{\text{ }}{q_0}){\text{ }}{e^{\; - k}}\]
\[{q_i}\; = \]initial temperature of object
\[{q_f}\; = \] final temperature of object
Complete step by step solution:
Given by,
Let as take ${T_0} = {\theta _0}$ and ${T_1} = {\theta _1}$
the specific heat capacity of the body is $s$and its mass is $m$
Assume Newton's law of cooling to be valid.
Now, we find the measurement head that the body can lose
According to the Newton cooling Rule,
$\Rightarrow$ \[\dfrac{{d\theta }}{{dt}} = {\text{ }} - k[\theta {\text{ }}-{\text{ }}{\theta _0}]\]
$(A)$ Highest heat the body will loss,
$\Rightarrow$ $\Delta {Q_{\max }} = ms\left( {{\theta _1} - {\theta _0}} \right)$
$(B)$ If the body loses $50\% $ of maximum heat, the temperature drop will be somewhere.
$\Rightarrow$ $\Delta {Q_{\max }} \times \dfrac{{50}}{{100}} = ms\left( {{\theta _1} - \theta } \right)$
Rearranging the given equation,
We get,
$\Rightarrow$ $ms\left( {{\theta _1} - {\theta _0}} \right) \times \dfrac{1}{2} = ms\left( {{\theta _1} - \theta } \right)$
Cancel the common factor,
$\Rightarrow$ $\theta = {\theta _1} - \left( {{\theta _1} - {\theta _0}} \right) \times \dfrac{1}{2}$
$\Rightarrow$ $\theta = \dfrac{{\left( {{\theta _1} - {\theta _0}} \right)}}{2}$………$(1)$
From Newton’s cooling theory,
\[\dfrac{{d\theta }}{{dt}} = {\text{ }} - k[{\theta _1}-\theta ]\]
If we integrate this equation within the appropriate limit, we get
At time $t = 0$
$\theta = {\theta _1}$
At time $t$,
$\theta = \theta $
According to the Stefan law,
$\Rightarrow$ $\int {_{{\theta _1}}^\theta } \dfrac{{d\theta }}{{{\theta _1} - \theta }} = - k\int {_0^t} dt$
In $\left( {\dfrac{{{\theta _1} - \theta }}{{{\theta _1} - {\theta _0}}}} \right) = - kt$
We rearranging the above equation
Can be written as,
$\Rightarrow$ ${\theta _1} - \theta = \left( {{\theta _1} - {\theta _0}} \right){e^{ - kt}}$ ………………$(2)$
From equation $(1)$ and \[(2)\]
$\Rightarrow$ $\dfrac{{{\theta _1} - {\theta _0}}}{2} - {\theta _0} = \left( {{\theta _1} - {\theta _0}} \right){e^{ - kt}}$
$\Rightarrow$ $t = \,In\,\left( {\dfrac{2}{k}} \right)$
The time starting from $t = 0$ in which it will lose $50\% $ of this maximum heat is $t = \,In\,\left( {\dfrac{2}{k}} \right)$.
Note: Hence we can assume a constant rate of cooling, which is equal to the rate of cooling corresponding to the average body temperature during the interval when we only need estimated values from Newton's law. The temperature of the object and its environment, as long as the difference is minimal.
Formula used:
This expression represents Newton’s law of cooling. It can be derived directly from Stefan’s law,
\[\dfrac{{d\theta }}{{dt}} = {\text{ }} - k[q{\text{ }}-{\text{ }}{{\text{q}}_s}]\]
Where,
$q$and ${q_s}$ are temperatures corresponding to objects and surroundings.
The heat is transferred more rapidly as the body temperature changes. Newton’
\[{q_f}\; = {\text{ }}{q_0}\; + {\text{ }}({q_i}\;-{\text{ }}{q_0}){\text{ }}{e^{\; - k}}\]
\[{q_i}\; = \]initial temperature of object
\[{q_f}\; = \] final temperature of object
Complete step by step solution:
Given by,
Let as take ${T_0} = {\theta _0}$ and ${T_1} = {\theta _1}$
the specific heat capacity of the body is $s$and its mass is $m$
Assume Newton's law of cooling to be valid.
Now, we find the measurement head that the body can lose
According to the Newton cooling Rule,
$\Rightarrow$ \[\dfrac{{d\theta }}{{dt}} = {\text{ }} - k[\theta {\text{ }}-{\text{ }}{\theta _0}]\]
$(A)$ Highest heat the body will loss,
$\Rightarrow$ $\Delta {Q_{\max }} = ms\left( {{\theta _1} - {\theta _0}} \right)$
$(B)$ If the body loses $50\% $ of maximum heat, the temperature drop will be somewhere.
$\Rightarrow$ $\Delta {Q_{\max }} \times \dfrac{{50}}{{100}} = ms\left( {{\theta _1} - \theta } \right)$
Rearranging the given equation,
We get,
$\Rightarrow$ $ms\left( {{\theta _1} - {\theta _0}} \right) \times \dfrac{1}{2} = ms\left( {{\theta _1} - \theta } \right)$
Cancel the common factor,
$\Rightarrow$ $\theta = {\theta _1} - \left( {{\theta _1} - {\theta _0}} \right) \times \dfrac{1}{2}$
$\Rightarrow$ $\theta = \dfrac{{\left( {{\theta _1} - {\theta _0}} \right)}}{2}$………$(1)$
From Newton’s cooling theory,
\[\dfrac{{d\theta }}{{dt}} = {\text{ }} - k[{\theta _1}-\theta ]\]
If we integrate this equation within the appropriate limit, we get
At time $t = 0$
$\theta = {\theta _1}$
At time $t$,
$\theta = \theta $
According to the Stefan law,
$\Rightarrow$ $\int {_{{\theta _1}}^\theta } \dfrac{{d\theta }}{{{\theta _1} - \theta }} = - k\int {_0^t} dt$
In $\left( {\dfrac{{{\theta _1} - \theta }}{{{\theta _1} - {\theta _0}}}} \right) = - kt$
We rearranging the above equation
Can be written as,
$\Rightarrow$ ${\theta _1} - \theta = \left( {{\theta _1} - {\theta _0}} \right){e^{ - kt}}$ ………………$(2)$
From equation $(1)$ and \[(2)\]
$\Rightarrow$ $\dfrac{{{\theta _1} - {\theta _0}}}{2} - {\theta _0} = \left( {{\theta _1} - {\theta _0}} \right){e^{ - kt}}$
$\Rightarrow$ $t = \,In\,\left( {\dfrac{2}{k}} \right)$
The time starting from $t = 0$ in which it will lose $50\% $ of this maximum heat is $t = \,In\,\left( {\dfrac{2}{k}} \right)$.
Note: Hence we can assume a constant rate of cooling, which is equal to the rate of cooling corresponding to the average body temperature during the interval when we only need estimated values from Newton's law. The temperature of the object and its environment, as long as the difference is minimal.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Which of the following is the smallest unit of length class 11 physics JEE_Main
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Clemmenson and Wolff Kishner Reductions for JEE
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
JEE Main 2023 January 30 Shift 2 Question Paper with Answer Keys & Solutions