
A man of \[50kg\] is standing at one end on a boat of length $25m$ and mass $200kg$. If he starts running and when he reaches the other end, he has a velocity $2m{s^{ - 1}}$ with respect to the boat. The final velocity of the boat is (in $m{s^{ - 1}}$).
A) $\dfrac{2}{5}$
B) $\dfrac{2}{3}$
C) $\dfrac{8}{5}$
D) $\dfrac{8}{3}$
Answer
233.1k+ views
Hint: The given question is based on conservation of momentum. So, in order to get the correct solution for the given question, we need to apply the conservation of momentum for the man and the boat after reaching the other end. After that we need to solve the equation to conclude with the correct solution.
Complete step by step solution:
The mass of the man in the question is given as, $m = 50kg$
The mass of the boat in the question is given as, $M = 200kg$
The velocity of the man after reaching the other end is given as, $v = 2m{s^{ - 1}}$
And let us assume the velocity of the boat after the man reaches the other end to be, $V$
According to the question initially both the man and the boat were at rest.
Now, applying the conservation of momentum, we get,
${P_1} = {P_2}$
We know that momentum can be written as, $P = mv$
Now, let us write the equation for the conservation of momentum for the given case.
So, we get,
$ \Rightarrow mv + (m + M)V = 0$
$ \Rightarrow 50 \times 2 + (50 + 200)V = 0$
$ \Rightarrow 100 + 250V = 0$
$ \Rightarrow 250V = 100$
$\therefore V = - \dfrac{{100}}{{250}} = - \dfrac{2}{5}m{s^{ - 1}}$
Here, a negative sign shows that the velocity of the man is in the opposite direction of the boat.
Therefore, the final velocity of the boat is $\dfrac{2}{5}m{s^{ - 1}}$.
Hence, option (A) is the correct choice for the given question.
Note: According to the conservation of momentum, the momentum before collision is equal to the momentum after collision. We define momentum as the product of mass and the velocity of a body. When the bodies are moving in a straight path, the momentum is said to be linear momentum.
Complete step by step solution:
The mass of the man in the question is given as, $m = 50kg$
The mass of the boat in the question is given as, $M = 200kg$
The velocity of the man after reaching the other end is given as, $v = 2m{s^{ - 1}}$
And let us assume the velocity of the boat after the man reaches the other end to be, $V$
According to the question initially both the man and the boat were at rest.
Now, applying the conservation of momentum, we get,
${P_1} = {P_2}$
We know that momentum can be written as, $P = mv$
Now, let us write the equation for the conservation of momentum for the given case.
So, we get,
$ \Rightarrow mv + (m + M)V = 0$
$ \Rightarrow 50 \times 2 + (50 + 200)V = 0$
$ \Rightarrow 100 + 250V = 0$
$ \Rightarrow 250V = 100$
$\therefore V = - \dfrac{{100}}{{250}} = - \dfrac{2}{5}m{s^{ - 1}}$
Here, a negative sign shows that the velocity of the man is in the opposite direction of the boat.
Therefore, the final velocity of the boat is $\dfrac{2}{5}m{s^{ - 1}}$.
Hence, option (A) is the correct choice for the given question.
Note: According to the conservation of momentum, the momentum before collision is equal to the momentum after collision. We define momentum as the product of mass and the velocity of a body. When the bodies are moving in a straight path, the momentum is said to be linear momentum.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

