Answer
Verified
110.7k+ views
Hint: The given problem can be solved using one of the three laws that was proposed by Sir Isaac Newton, that is the formula derived from Newton's second law of motion which incorporates the mass of the man and the acceleration due the gravity.
The formula for finding the reading on the machine is given by the Newton’s second law of motion;
$W = mg$
Where, $W$ denotes the weight of the man standing on the weighing machine, $m$ denotes the mass of the man, $g$ denotes the acceleration due to gravity of the man on the weighing machine.
Complete step by step solution:
The data given in the problem are;
Mass of the man is, $m = 60\,\,Kg$,
Acceleration due to gravitational force, $g = 10\,\,m{s^{ - 2}}$.
The formula for reading on the machine is given as;
$W = mg$
That is,
Since the acceleration of the object is equal to the acceleration due to gravity.
$W = mg$,
Where, $g$ represents the acceleration due to gravity.
Substitute the values for the mass of the man standing on the weighing Machine and the acceleration due to the gravitational pull of earth that is acting on the man.
$\Rightarrow W = 60\,Kg \times 10\,m{s^{ - 2}}$
On simplifying the above equation, we get,
$\Rightarrow W = 600\,N$
Therefore, the reading on the machine when the man is standing on the weighing machine is $\Rightarrow F = 600\,\,N$.
Hence the option (B), $F = 600\,\,N$ is the correct answer.
Note: The value for the acceleration due to gravity is $g = 9.8\,\,m{s^{ - 2}}$, but we can round it off to the value of $g = 10\,\,m{s^{ - 2}}$, to keep the calculation difficulties to a minimum. In the above problem we use acceleration due to gravity, instead of acceleration because both of them are the same in case of gravitational force.
The formula for finding the reading on the machine is given by the Newton’s second law of motion;
$W = mg$
Where, $W$ denotes the weight of the man standing on the weighing machine, $m$ denotes the mass of the man, $g$ denotes the acceleration due to gravity of the man on the weighing machine.
Complete step by step solution:
The data given in the problem are;
Mass of the man is, $m = 60\,\,Kg$,
Acceleration due to gravitational force, $g = 10\,\,m{s^{ - 2}}$.
The formula for reading on the machine is given as;
$W = mg$
That is,
Since the acceleration of the object is equal to the acceleration due to gravity.
$W = mg$,
Where, $g$ represents the acceleration due to gravity.
Substitute the values for the mass of the man standing on the weighing Machine and the acceleration due to the gravitational pull of earth that is acting on the man.
$\Rightarrow W = 60\,Kg \times 10\,m{s^{ - 2}}$
On simplifying the above equation, we get,
$\Rightarrow W = 600\,N$
Therefore, the reading on the machine when the man is standing on the weighing machine is $\Rightarrow F = 600\,\,N$.
Hence the option (B), $F = 600\,\,N$ is the correct answer.
Note: The value for the acceleration due to gravity is $g = 9.8\,\,m{s^{ - 2}}$, but we can round it off to the value of $g = 10\,\,m{s^{ - 2}}$, to keep the calculation difficulties to a minimum. In the above problem we use acceleration due to gravity, instead of acceleration because both of them are the same in case of gravitational force.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main