
A man of mass $m$ is standing on a platform of mass $M$ kept on smooth ice. If the man starts moving on the platform with a speed $v$ relative to the platform, with what velocity relative to the ice does the platform recoil?
A) $\dfrac{{mv}}{{M + m}}$
B) $\dfrac{{Mv}}{{M + m}}$
C) $\dfrac{{mv}}{{M - m}}$
D) $\dfrac{{Mv}}{{M - m}}$
Answer
233.1k+ views
Hint: In order to find the solution of the given question, first of all we need to relate the relative velocity of the man with the platform. Then we need to relate that velocity with the linear momentum of the system. After solving the equation formed we can finally conclude with the correct solution of the given question.
Complete step by step solution:
First of all let us find the velocity of man relative to the platform.
Let us assume that the man moves with a velocity of $u$ on the right side and the platform recoils with a velocity of $V$towards the left side relative to the smooth surface.
So, the velocity of the man relative to the platform can be written as, $u + V$
Now, the equation for the relative velocities can be written as,
$u + V = v$
Or, $u = v - V$………… (i)
We know that linear momentum of a system is constant.
And initially both the man and the platform were at rest.
Now, according to the conservation of momentum, we can write,
$\Rightarrow MV - mu = 0$
$ \Rightarrow MV = mu$
From equation (i), we can write the above equation as,
$ \Rightarrow MV = m(v - V)$
$ \Rightarrow Mv = mv - mV$
$ \Rightarrow Mv + mv = mV$
$ \Rightarrow v(M + m) = mV$
$\therefore v = \dfrac{{mV}}{{M + m}}$
Therefore, the required recoil velocity of the ice is $\dfrac{{mV}}{{M + m}}$.
Hence, option (A), i.e. $\dfrac{{mV}}{{M + m}}$ is the correct choice of the given question.
Note: According to the conservation of momentum, the momentum before collision is equal to the momentum after collision. We define momentum as the product of mass and the velocity of a body. When the bodies are moving in a straight path, the momentum is said to be linear momentum.
Complete step by step solution:
First of all let us find the velocity of man relative to the platform.
Let us assume that the man moves with a velocity of $u$ on the right side and the platform recoils with a velocity of $V$towards the left side relative to the smooth surface.
So, the velocity of the man relative to the platform can be written as, $u + V$
Now, the equation for the relative velocities can be written as,
$u + V = v$
Or, $u = v - V$………… (i)
We know that linear momentum of a system is constant.
And initially both the man and the platform were at rest.
Now, according to the conservation of momentum, we can write,
$\Rightarrow MV - mu = 0$
$ \Rightarrow MV = mu$
From equation (i), we can write the above equation as,
$ \Rightarrow MV = m(v - V)$
$ \Rightarrow Mv = mv - mV$
$ \Rightarrow Mv + mv = mV$
$ \Rightarrow v(M + m) = mV$
$\therefore v = \dfrac{{mV}}{{M + m}}$
Therefore, the required recoil velocity of the ice is $\dfrac{{mV}}{{M + m}}$.
Hence, option (A), i.e. $\dfrac{{mV}}{{M + m}}$ is the correct choice of the given question.
Note: According to the conservation of momentum, the momentum before collision is equal to the momentum after collision. We define momentum as the product of mass and the velocity of a body. When the bodies are moving in a straight path, the momentum is said to be linear momentum.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

