
A mass of $10kg$ is balanced on a sensitive physical balance. A $1000kg$ mass is placed below $10kg$ mass at a distance of $1m$. How much additional mass will be required for balancing the physical balance?
A) $66 \times {10^{ - 15}}kg$
B) $6.7 \times {10^{ - 8}}kg$
C) $66 \times {10^{ - 12}}kg$
D) $6.7 \times {10^{ - 6}}kg$
Answer
232.8k+ views
Hint: Newton's law of gravitation states that the force between two unknown masses is directly proportional to the force acting between them. The force is inversely proportional to the square of distance between the masses. Also these masses experience acceleration due to gravity as well.
Complete step by step solution:
Using the Newton’s law of gravitation
$F = \dfrac{{GMm}}{{{r^2}}}$
$F$ is the force between the two bodies
$G$ is the gravitational constant
$M$ is mass for first body
$m$ is mass of second body
$r$ is distance between two bodies
$F = \dfrac{{6.6 \times {{10} ^ {- 11}} \times 10 \times 1000}} {1} $
$F = 6.6 \times {10^ {- 7}} N$
We know that,
$F = mg$
$g$ is acceleration due to gravity
Therefore,
$mg = 6.6 \times {10^ {- 7}} N$
$m = 6.7 \times {10^ {- 8}} kg$
The additional mass will be required for balancing the physical balance is $6.7 \times {10^ {- 8}} kg$.
Hence the correct option is B.
Note: It depends on the masses involved and the space between them. Gravitational strength is still attractive. In the world, any object attracts some other object along a line that joins it by force. As force is the quantity of a vector, the sum of the vectors of all parts of the shell refers to the net force, which equals one force estimate from the midpoint or centre of mass of the sphere. A hollow spherical shell has a gravitational force zero on an object.
Complete step by step solution:
Using the Newton’s law of gravitation
$F = \dfrac{{GMm}}{{{r^2}}}$
$F$ is the force between the two bodies
$G$ is the gravitational constant
$M$ is mass for first body
$m$ is mass of second body
$r$ is distance between two bodies
$F = \dfrac{{6.6 \times {{10} ^ {- 11}} \times 10 \times 1000}} {1} $
$F = 6.6 \times {10^ {- 7}} N$
We know that,
$F = mg$
$g$ is acceleration due to gravity
Therefore,
$mg = 6.6 \times {10^ {- 7}} N$
$m = 6.7 \times {10^ {- 8}} kg$
The additional mass will be required for balancing the physical balance is $6.7 \times {10^ {- 8}} kg$.
Hence the correct option is B.
Note: It depends on the masses involved and the space between them. Gravitational strength is still attractive. In the world, any object attracts some other object along a line that joins it by force. As force is the quantity of a vector, the sum of the vectors of all parts of the shell refers to the net force, which equals one force estimate from the midpoint or centre of mass of the sphere. A hollow spherical shell has a gravitational force zero on an object.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

