
A material has Poisson’s ratio 0.3. If a uniform rod of it suffers a longitudinal strain of \[3 \times {10^{ - 3}}\], what will be the percentage increase in volume?
Answer
132.9k+ views
Hint: In this question we have to find the value of increase in the volume of the material. The Poisson’s ratio and longitudinal strain of the material are given. To find the increase in volume we will use the formula for Poisson’s ratio,
${\text{Poisson's ratio(}}\sigma {\text{)}} = - \left( {\dfrac{{\Delta R/R}}{{\Delta L/L}}} \right)$
Complete step by step solution:
Given,
$\Rightarrow \dfrac{{\Delta L}}{L} = 3 \times {10^{ - 3}}$
$\Rightarrow {\text{Poisson's ratio(}}\sigma {\text{)}} = - \left( {\dfrac{{\Delta R/R}}{{\Delta L/L}}} \right)$
$\Rightarrow 0.3 = - \left( {\dfrac{{\Delta R/R}}{{3 \times {{10}^{ - 3}}}}} \right)$
$\Rightarrow \dfrac{{\Delta R}}{R} = - 0.3 \times 3 \times {10^{ - 3}}$
$\Rightarrow \dfrac{{\Delta R}}{R} = - 0.9 \times {10^{ - 3}}$
Volume of rod is $V = \pi {R^2}L$
To find an increase in volume we will convert it in this form.
$\Rightarrow \dfrac{{\Delta V}}{V} = 2\dfrac{{\Delta R}}{R} + \dfrac{{\Delta L}}{L}$
$\Rightarrow \dfrac{{\Delta V}}{V} = \left( { - 2 \times 0.9 \times {{10}^{ - 3}} + 3 \times {{10}^{ - 3}}} \right)$
$\Rightarrow \dfrac{{\Delta V}}{V} = 1.2 \times {10^{ - 3}}$
Now, we will find the percentage increase in volume
$\Rightarrow \dfrac{{\Delta V}}{V} \times 100 = 1.2 \times {10^{ - 3}} \times 100$
$\Rightarrow \dfrac{{\Delta V}}{V} \times 100 = 0.12\% $
Hence, from the above calculation we have found the value of percentage increase in volume and it comes out to be, $\dfrac{{\Delta V}}{V} \times 100 = 0.12\% $.
Additional Information:
Strain is a measure of how much a body has been deformed or stretched. Strain in a body occurs when a force is applied on it. This is a unit less quantity. Strain in a body is given by following formula;
$strain = \dfrac{{extension}}{{length}}$
If the extension in length is $\Delta L$and the total length of the body is $L$, then strain is given by following formula;
$strain = \dfrac{{\Delta L}}{L}$
There are three types of stain-
Longitudinal strain $\dfrac{{\Delta L}}{L}$
Shearing strain $\dfrac{{\Delta L}}{L}$
Volumetric strain $\dfrac{{\Delta V}}{V}$
Note: Poisson’s ratio is a measure of deformation of a material in different directions perpendicular to the direction of the force applied. In other words, a Poisson’s ratio is the ratio of the transverse strain to the longitudinal strain. It is represented by $\sigma $. Since, it is a ratio so it does not have any dimension. It is a scalar quantity.
${\text{Poisson's ratio(}}\sigma {\text{)}} = - \left( {\dfrac{{Transverse{\text{ strain}}}}{{Longitudinal{\text{ strain}}}}} \right)$
The deformation in the material in different directions perpendicular to the direction of force applied on the material is also known as Poisson’s effect.
${\text{Poisson's ratio(}}\sigma {\text{)}} = - \left( {\dfrac{{\Delta R/R}}{{\Delta L/L}}} \right)$
Complete step by step solution:
Given,
$\Rightarrow \dfrac{{\Delta L}}{L} = 3 \times {10^{ - 3}}$
$\Rightarrow {\text{Poisson's ratio(}}\sigma {\text{)}} = - \left( {\dfrac{{\Delta R/R}}{{\Delta L/L}}} \right)$
$\Rightarrow 0.3 = - \left( {\dfrac{{\Delta R/R}}{{3 \times {{10}^{ - 3}}}}} \right)$
$\Rightarrow \dfrac{{\Delta R}}{R} = - 0.3 \times 3 \times {10^{ - 3}}$
$\Rightarrow \dfrac{{\Delta R}}{R} = - 0.9 \times {10^{ - 3}}$
Volume of rod is $V = \pi {R^2}L$
To find an increase in volume we will convert it in this form.
$\Rightarrow \dfrac{{\Delta V}}{V} = 2\dfrac{{\Delta R}}{R} + \dfrac{{\Delta L}}{L}$
$\Rightarrow \dfrac{{\Delta V}}{V} = \left( { - 2 \times 0.9 \times {{10}^{ - 3}} + 3 \times {{10}^{ - 3}}} \right)$
$\Rightarrow \dfrac{{\Delta V}}{V} = 1.2 \times {10^{ - 3}}$
Now, we will find the percentage increase in volume
$\Rightarrow \dfrac{{\Delta V}}{V} \times 100 = 1.2 \times {10^{ - 3}} \times 100$
$\Rightarrow \dfrac{{\Delta V}}{V} \times 100 = 0.12\% $
Hence, from the above calculation we have found the value of percentage increase in volume and it comes out to be, $\dfrac{{\Delta V}}{V} \times 100 = 0.12\% $.
Additional Information:
Strain is a measure of how much a body has been deformed or stretched. Strain in a body occurs when a force is applied on it. This is a unit less quantity. Strain in a body is given by following formula;
$strain = \dfrac{{extension}}{{length}}$
If the extension in length is $\Delta L$and the total length of the body is $L$, then strain is given by following formula;
$strain = \dfrac{{\Delta L}}{L}$
There are three types of stain-
Longitudinal strain $\dfrac{{\Delta L}}{L}$
Shearing strain $\dfrac{{\Delta L}}{L}$
Volumetric strain $\dfrac{{\Delta V}}{V}$
Note: Poisson’s ratio is a measure of deformation of a material in different directions perpendicular to the direction of the force applied. In other words, a Poisson’s ratio is the ratio of the transverse strain to the longitudinal strain. It is represented by $\sigma $. Since, it is a ratio so it does not have any dimension. It is a scalar quantity.
${\text{Poisson's ratio(}}\sigma {\text{)}} = - \left( {\dfrac{{Transverse{\text{ strain}}}}{{Longitudinal{\text{ strain}}}}} \right)$
The deformation in the material in different directions perpendicular to the direction of force applied on the material is also known as Poisson’s effect.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 11th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
