
A particle A of mass $\dfrac{{10}}{7}kg$ is moving in the positive direction of $x$ . At initial position $x = 0$ its velocity is $1m/s$ , then its velocity at $x = 10m$ is: (use the graph given)

A) $4m/s$
B) $2m/s$
C) $3\sqrt 2 m/s$
D) $\dfrac{{100}}{3}m/s$
Answer
232.8k+ views
Hint: First, we will derive the relation between force and distance by using the relation between Power force and Velocity and the equate the area under the graph with the derived formula to get the final answer.
Formula used:
Power, $P = F \times v$
Where, $F$ is the force and $v$ is the velocity
Area of trapezium, $A = \dfrac{1}{2}(a + b) \times h$
Where, $a,b$ are the lengths of the parallel sides of trapezium and $h$ is the height of the trapezium.
Complete step by step solution:
As we know, Power, $P = F \times v$
Where, $F$ is the force and $v$ is the velocity
Also, $F = ma$ $ \Rightarrow P = ma \times v$
Since $a$ is the derivative of $v$ , and $v$ is the derivative of $m$ ,
$P = m\dfrac{{dv}}{{dt}} \times v \Rightarrow P = m\dfrac{{dv}}{{dx}}\dfrac{{dx}}{{dt}} \times v$
$ \Rightarrow P.dx = mvdv\dfrac{{dx}}{{dt}}$
Which gives, $P.dx = m{v^2}dv$ (since $\dfrac{{dx}}{{dt}} = v$ )
Integrating both sides,
$\int {P.dx = \int\limits_1^v {m{v^2}dv} } $
$ \Rightarrow P = [\dfrac{{m{v^3}}}{3}]_1^v$
Which gives, $P = \dfrac{m}{3}({v^3} - 1)$
Now we have mass equal to $\dfrac{{10}}{7}kg$
Also, the area under a curve between two points can be found by doing a definite integral between the two points. Here that area is present in the shape of trapezium. A trapezium is a $2D$ shape and a type of quadrilateral, which has only two parallel sides and the other two sides are non-parallel.
Therefore, Area of trapezium, $A = \dfrac{1}{2}(a + b) \times h$
Where, $a,b$ are the lengths of the parallel sides of trapezium and $h$ is the height of the trapezium.
$ \Rightarrow A = \dfrac{1}{2}(2 + 4) \times 10 = \dfrac{1}{2} \times 6 \times 10 = 30$
We derived a relation between power and distance. Equate both the values
$ \Rightarrow \dfrac{m}{3}({v^3} - 1) = 30$
$ \Rightarrow \dfrac{{10}}{{7 \times 3}}({v^3} - 1) = 30$
This gives, $v = 4m/s$
Hence, Option (A) is correct.
Note: Convert all the given values into SI units before using them in any question. Don’t forget to put units in the final answer. We had to derive a relation between Power and Mass because in the question, the graph is given in terms of Power and mass only.
Formula used:
Power, $P = F \times v$
Where, $F$ is the force and $v$ is the velocity
Area of trapezium, $A = \dfrac{1}{2}(a + b) \times h$
Where, $a,b$ are the lengths of the parallel sides of trapezium and $h$ is the height of the trapezium.
Complete step by step solution:
As we know, Power, $P = F \times v$
Where, $F$ is the force and $v$ is the velocity
Also, $F = ma$ $ \Rightarrow P = ma \times v$
Since $a$ is the derivative of $v$ , and $v$ is the derivative of $m$ ,
$P = m\dfrac{{dv}}{{dt}} \times v \Rightarrow P = m\dfrac{{dv}}{{dx}}\dfrac{{dx}}{{dt}} \times v$
$ \Rightarrow P.dx = mvdv\dfrac{{dx}}{{dt}}$
Which gives, $P.dx = m{v^2}dv$ (since $\dfrac{{dx}}{{dt}} = v$ )
Integrating both sides,
$\int {P.dx = \int\limits_1^v {m{v^2}dv} } $
$ \Rightarrow P = [\dfrac{{m{v^3}}}{3}]_1^v$
Which gives, $P = \dfrac{m}{3}({v^3} - 1)$
Now we have mass equal to $\dfrac{{10}}{7}kg$
Also, the area under a curve between two points can be found by doing a definite integral between the two points. Here that area is present in the shape of trapezium. A trapezium is a $2D$ shape and a type of quadrilateral, which has only two parallel sides and the other two sides are non-parallel.
Therefore, Area of trapezium, $A = \dfrac{1}{2}(a + b) \times h$
Where, $a,b$ are the lengths of the parallel sides of trapezium and $h$ is the height of the trapezium.
$ \Rightarrow A = \dfrac{1}{2}(2 + 4) \times 10 = \dfrac{1}{2} \times 6 \times 10 = 30$
We derived a relation between power and distance. Equate both the values
$ \Rightarrow \dfrac{m}{3}({v^3} - 1) = 30$
$ \Rightarrow \dfrac{{10}}{{7 \times 3}}({v^3} - 1) = 30$
This gives, $v = 4m/s$
Hence, Option (A) is correct.
Note: Convert all the given values into SI units before using them in any question. Don’t forget to put units in the final answer. We had to derive a relation between Power and Mass because in the question, the graph is given in terms of Power and mass only.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

