Answer
Verified
110.4k+ views
Hint: The particle at a height \[h\] at rest (initial velocity is zero), moves under gravity and reaches the ground at time t seconds. The distance travelled in the last second is given (position). Since the position and time of the moving body is concerned (with zero initial velocity), the second law of equation should be applied.
Formula used:
Using the second equation of motion, under gravity g,
\[v = ut + \dfrac{1}{2}g{t^2}\]
The initial and final velocity is denoted by ‘u’ and ‘v’ respectively. And, ‘t’ is the time taken to cover the full distance.
Complete step by step answer:
Initially a particle is at rest, say, at a height h from the ground.
Since the particle is at rest, the distance covered is 0
$velocity = \dfrac{{displacement}}{{time}}$
And, the initial velocity $u = 0m{s^{ - 1}}$
Distance travelled in last second $d = 53.9m$
Given, gravitational force \[g = 9.8m{s^{ - 2}}\]
Let the total time taken by the particle to fall (from the height h to the ground) = $t$
Since the particle started from rest,
$u = 0$
At time $t = t - 1$ seconds,
Therefore, distance travelled by the moving particle in \[\left( {t - 1} \right)\] seconds = $S$
\[\Rightarrow S = 0 + \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
Similarly , distance travelled in t seconds \[ = 0 + \dfrac{1}{2}g{t^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{t^2}\]
Height h = distance travelled in (t-1) seconds + distance travelled in last second
\[\begin{array}{*{20}{l}}
{\Rightarrow \dfrac{1}{2}g{t^2} = \dfrac{1}{2}g{{\left( {t - 1} \right)}^2} + 53.9} \\
{ \Rightarrow \dfrac{1}{2}g{{ }}\left( {{t^2}-{t^2} + 2t - 1} \right){{ }} = 53.9} \\
{ \Rightarrow g\left( {2t-1} \right){{ }} = 2 \times 53.9} \\
{ \Rightarrow 9.8\left( {2t-1} \right){{ }} = {{ 107}}{{.8}}} \\
{ \Rightarrow 2t-1 = \dfrac{{53.9}}{{4.9}} = {{ }}11} \\
{\therefore t = 6\sec }
\end{array}\]
Total time of fall = 6 seconds
Hence option (C) is the correct one.
Note: When the Velocity and time of a moving body are related (and for non-zero initial velocity), First equation of motion should be applied. It goes like this
\[{{v}} = u + at\]
Acceleration due to gravity (\[g = 9.8{{ }}m{s^{ - 2}}\]) is denoted by ‘a’. And, ‘u’ and ‘v’ denote the initial and final velocity respectively.
Formula used:
Using the second equation of motion, under gravity g,
\[v = ut + \dfrac{1}{2}g{t^2}\]
The initial and final velocity is denoted by ‘u’ and ‘v’ respectively. And, ‘t’ is the time taken to cover the full distance.
Complete step by step answer:
Initially a particle is at rest, say, at a height h from the ground.
Since the particle is at rest, the distance covered is 0
$velocity = \dfrac{{displacement}}{{time}}$
And, the initial velocity $u = 0m{s^{ - 1}}$
Distance travelled in last second $d = 53.9m$
Given, gravitational force \[g = 9.8m{s^{ - 2}}\]
Let the total time taken by the particle to fall (from the height h to the ground) = $t$
Since the particle started from rest,
$u = 0$
At time $t = t - 1$ seconds,
Therefore, distance travelled by the moving particle in \[\left( {t - 1} \right)\] seconds = $S$
\[\Rightarrow S = 0 + \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{\left( {t - 1} \right)^2}\]
Similarly , distance travelled in t seconds \[ = 0 + \dfrac{1}{2}g{t^2}\]
\[\Rightarrow S = \dfrac{1}{2}g{t^2}\]
Height h = distance travelled in (t-1) seconds + distance travelled in last second
\[\begin{array}{*{20}{l}}
{\Rightarrow \dfrac{1}{2}g{t^2} = \dfrac{1}{2}g{{\left( {t - 1} \right)}^2} + 53.9} \\
{ \Rightarrow \dfrac{1}{2}g{{ }}\left( {{t^2}-{t^2} + 2t - 1} \right){{ }} = 53.9} \\
{ \Rightarrow g\left( {2t-1} \right){{ }} = 2 \times 53.9} \\
{ \Rightarrow 9.8\left( {2t-1} \right){{ }} = {{ 107}}{{.8}}} \\
{ \Rightarrow 2t-1 = \dfrac{{53.9}}{{4.9}} = {{ }}11} \\
{\therefore t = 6\sec }
\end{array}\]
Total time of fall = 6 seconds
Hence option (C) is the correct one.
Note: When the Velocity and time of a moving body are related (and for non-zero initial velocity), First equation of motion should be applied. It goes like this
\[{{v}} = u + at\]
Acceleration due to gravity (\[g = 9.8{{ }}m{s^{ - 2}}\]) is denoted by ‘a’. And, ‘u’ and ‘v’ denote the initial and final velocity respectively.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main