Answer
Verified
110.4k+ views
Hint: The equations given are parametric equations of a particular shape. We need to compare the equation with the parametric equations of the given options.
Formula used: In this solution we will be using the following formulae;
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] Cartesian equation of an ellipse, with semi major axis \[a\] and semi minor axis \[b\]. \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\] Cartesian equation of a circle, with radius \[a\].
\[x = a\cos \omega t\] and \[y = b\sin \theta \] this is the parametric equation of an ellipse. \[x = a\cos \theta \] and \[y = a\sin \theta \] this is the parametric equation of a circle
Complete Step-by-Step Solution:
A particle is said to move in the x y plane according to the rule
\[x = a\cos \omega t\] and also \[y = a\sin \omega t\]
This is a parametric equation. We shall compare it to the parametric equation of each of the options.
Option A is given an ellipse. The parametric equation of an ellipse centred at the origin is given as
\[x = a\cos \omega t\] and \[y = b\sin \theta \] where \[a\] is the semi major axis and \[b\] is the semi minor axis. (this can be interchanged, depending on the orientation of the ellipse)
Hence, by observation, we see that this is not the equation is not that of an ellipse.
Option B is given as a circle. The parametric equation of a circle is given as
\[x = a\cos \theta \] and \[y = a\sin \theta \] where \[a\] is the radius.
Hence by observation, we can see that the equation above is exactly like the equation of a circle where \[\theta = \omega t\]
Hence, the particle traces out a circular path
Thus, the correct option is B.
Note: Alternatively, the equation can be converted to Cartesian form or standard form. This can be done as follows,
Squaring both x and y equation, we have
\[{x^2} = {\left( {a\cos \omega t} \right)^2} = {a^2}{\cos ^2}\omega t\], and for y coordinate,
\[{y^2} = {\left( {a\sin \omega t} \right)^2} = {a^2}{\sin ^2}\omega t\]
Now, we add the two equations together, such that we get
\[{x^2} + {y^2} = {a^2}{\cos ^2}\omega t + {a^2}{\sin ^2}\omega t\]
By factorising out \[{a^2}\], we get
\[{x^2} + {y^2} = {a^2}\left( {{{\cos }^2}\omega t + {{\sin }^2}\omega t} \right)\]
Then, since\[{\cos ^2}\omega t + {\sin ^2}\omega t = 1\], we have
\[{x^2} + {y^2} = {a^2}\] or
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\]
And this is precisely the Cartesian equation of a circle.
An ellipse would have been,
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Formula used: In this solution we will be using the following formulae;
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] Cartesian equation of an ellipse, with semi major axis \[a\] and semi minor axis \[b\]. \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\] Cartesian equation of a circle, with radius \[a\].
\[x = a\cos \omega t\] and \[y = b\sin \theta \] this is the parametric equation of an ellipse. \[x = a\cos \theta \] and \[y = a\sin \theta \] this is the parametric equation of a circle
Complete Step-by-Step Solution:
A particle is said to move in the x y plane according to the rule
\[x = a\cos \omega t\] and also \[y = a\sin \omega t\]
This is a parametric equation. We shall compare it to the parametric equation of each of the options.
Option A is given an ellipse. The parametric equation of an ellipse centred at the origin is given as
\[x = a\cos \omega t\] and \[y = b\sin \theta \] where \[a\] is the semi major axis and \[b\] is the semi minor axis. (this can be interchanged, depending on the orientation of the ellipse)
Hence, by observation, we see that this is not the equation is not that of an ellipse.
Option B is given as a circle. The parametric equation of a circle is given as
\[x = a\cos \theta \] and \[y = a\sin \theta \] where \[a\] is the radius.
Hence by observation, we can see that the equation above is exactly like the equation of a circle where \[\theta = \omega t\]
Hence, the particle traces out a circular path
Thus, the correct option is B.
Note: Alternatively, the equation can be converted to Cartesian form or standard form. This can be done as follows,
Squaring both x and y equation, we have
\[{x^2} = {\left( {a\cos \omega t} \right)^2} = {a^2}{\cos ^2}\omega t\], and for y coordinate,
\[{y^2} = {\left( {a\sin \omega t} \right)^2} = {a^2}{\sin ^2}\omega t\]
Now, we add the two equations together, such that we get
\[{x^2} + {y^2} = {a^2}{\cos ^2}\omega t + {a^2}{\sin ^2}\omega t\]
By factorising out \[{a^2}\], we get
\[{x^2} + {y^2} = {a^2}\left( {{{\cos }^2}\omega t + {{\sin }^2}\omega t} \right)\]
Then, since\[{\cos ^2}\omega t + {\sin ^2}\omega t = 1\], we have
\[{x^2} + {y^2} = {a^2}\] or
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1\]
And this is precisely the Cartesian equation of a circle.
An ellipse would have been,
\[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\]
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main