
A particle of mass \[m\] rotating along a circular path of the radius \[r\] with uniform speed. Its angular momentum about the axis of rotation is \[L\], the centripetal force acting on the particle is:
A) \[\dfrac{{{L}^{2}}}{m{{r}^{3}}}\]
B) \[\dfrac{{{L}^{2}}}{mr}\]
C) \[\dfrac{L}{m{{r}^{2}}}\]
D) \[\dfrac{{{L}^{2}}m}{r}\]
E) \[\dfrac{Lm}{{{r}^{2}}}\]
Answer
423.4k+ views
Hint: Angular momentum in rotational motion is equivalent to linear momentum in translation motion. Angular momentum is a vector quantity that is a measure of the rotational momentum of a rotating body. The angular momentum is directed along the rotation axis.
Formula Used:
\[L=I\omega \], \[I=m{{r}^{2}}\], \[\omega =\dfrac{v}{r}\] and \[F=\dfrac{m{{v}^{2}}}{r}\]
Complete step by step solution:
As stated in the hint, angular momentum is equivalent to linear momentum. We know that linear momentum is equal to the product of the mass of the body and its linear velocity. The equivalent of mass in rotational motion is the Moment of Inertia and the equivalent of linear velocity in rotational motion is angular velocity.
Mathematically, we can say that \[L=I\omega \] where \[L\] refers to the angular momentum of the body, \[I\] is the Moment of Inertia of the body and \[\omega \] is the angular velocity.
The Moment of Inertia \[I\] for a particle of mass \[m\] is given as \[I=m{{r}^{2}}\] and the angular velocity \[\omega \] of the body is given as \[\omega =\dfrac{v}{r}\] where \[v\] is the uniform speed of motion of the particle and \[r\] is the radius of the circular path.
Substituting the values of the moment of inertia and the angular velocity in the expression for angular momentum, we get
\[\begin{align}
& L=I\times \omega =m{{r}^{2}}\times \dfrac{v}{r} \\
& \Rightarrow L=mvr \\
& \Rightarrow v=\dfrac{L}{mr} \\
\end{align}\]
Now centripetal force \[F\] acting on a body in a circular motion is given as \[F=\dfrac{m{{v}^{2}}}{r}\]
Substituting the value of velocity obtained in terms of angular momentum, we get
\[\begin{align}
& F=\dfrac{m{{v}^{2}}}{r} \\
& \Rightarrow F=\dfrac{m}{r}\times {{v}^{2}}=\dfrac{m}{r}\times {{\left( \dfrac{L}{mr} \right)}^{2}} \\
& \Rightarrow F=\dfrac{m{{L}^{2}}}{r\times {{m}^{2}}\times {{r}^{2}}} \\
& \Rightarrow F=\dfrac{{{L}^{2}}}{m{{r}^{3}}} \\
\end{align}\]
Hence option (A) is the correct option.
Note:An alternative method of approaching this problem is as follows.
Angular momentum is also equivalent to the torque of linear momentum or the moment of momentum. Now the torque of linear momentum will be the product of linear momentum and the distance from the axis of rotation, that is \[L=mvr\]. Hence we can skip the angular velocity part.
Formula Used:
\[L=I\omega \], \[I=m{{r}^{2}}\], \[\omega =\dfrac{v}{r}\] and \[F=\dfrac{m{{v}^{2}}}{r}\]
Complete step by step solution:
As stated in the hint, angular momentum is equivalent to linear momentum. We know that linear momentum is equal to the product of the mass of the body and its linear velocity. The equivalent of mass in rotational motion is the Moment of Inertia and the equivalent of linear velocity in rotational motion is angular velocity.
Mathematically, we can say that \[L=I\omega \] where \[L\] refers to the angular momentum of the body, \[I\] is the Moment of Inertia of the body and \[\omega \] is the angular velocity.
The Moment of Inertia \[I\] for a particle of mass \[m\] is given as \[I=m{{r}^{2}}\] and the angular velocity \[\omega \] of the body is given as \[\omega =\dfrac{v}{r}\] where \[v\] is the uniform speed of motion of the particle and \[r\] is the radius of the circular path.
Substituting the values of the moment of inertia and the angular velocity in the expression for angular momentum, we get
\[\begin{align}
& L=I\times \omega =m{{r}^{2}}\times \dfrac{v}{r} \\
& \Rightarrow L=mvr \\
& \Rightarrow v=\dfrac{L}{mr} \\
\end{align}\]
Now centripetal force \[F\] acting on a body in a circular motion is given as \[F=\dfrac{m{{v}^{2}}}{r}\]
Substituting the value of velocity obtained in terms of angular momentum, we get
\[\begin{align}
& F=\dfrac{m{{v}^{2}}}{r} \\
& \Rightarrow F=\dfrac{m}{r}\times {{v}^{2}}=\dfrac{m}{r}\times {{\left( \dfrac{L}{mr} \right)}^{2}} \\
& \Rightarrow F=\dfrac{m{{L}^{2}}}{r\times {{m}^{2}}\times {{r}^{2}}} \\
& \Rightarrow F=\dfrac{{{L}^{2}}}{m{{r}^{3}}} \\
\end{align}\]
Hence option (A) is the correct option.
Note:An alternative method of approaching this problem is as follows.
Angular momentum is also equivalent to the torque of linear momentum or the moment of momentum. Now the torque of linear momentum will be the product of linear momentum and the distance from the axis of rotation, that is \[L=mvr\]. Hence we can skip the angular velocity part.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
