
A particle performs uniform circular motion with an angular momentum L. If the angular frequency of the particle is doubled and kinetic energy is halved, its angular momentum becomes:
A) $4L$
B) $2L$
C) $\dfrac{L}{2}$
D) $\dfrac{L}{4}$
Answer
525.1k+ views
Hint: Angular momentum is defined as the measure of the rotational momentum of the rotating body which is equal to the product of the angular velocity of the system and the moment of the inertia to the axis. Angular momentum is a vector quantity.
Complete step by step solution:
Given data:
Initial angular momentum = L
Initial angular frequency = $\omega $
Initial Kinetic energy = k
Final angular frequency, ${\omega ‘} = 2\omega $
Final Kinetic energy, ${k’} = \dfrac{k}{2}$
Final angular momentum =?
We know that angular momentum is given by the formula, $L = mvr$
And also we know that, $v = r\omega $
Thus L can be written as, $L = m\omega {r^2}$
The kinetic energy is given by the formula, $k = \dfrac{1}{2}m{v^2}$
We can also write angular momentum in terms of Inertia and angular frequency as, $L = I\omega $
Thus kinetic energy becomes, $k = \dfrac{1}{2}I{\omega ^2}$
$\therefore $Final Inertia, ${I’} = \dfrac{1}{8}I$
Thus substituting the value of ${I’}, {\omega '}$, we get,
$\Rightarrow {L'} = \dfrac{1}{8}I \times 2\omega = \dfrac{1}{4}I\omega $ $\Rightarrow \left( {\because {L'} = {I'}{\omega '}} \right)$
$\Rightarrow {L'} = \dfrac{L}{4}$ $\left( {\because L = I\omega } \right)$
Thus the final angular momentum becomes, ${L'} = \dfrac{L}{4}$.
Hence the correct option is D.
Additional Information:
1. Kinetic energy is defined as the energy possessed by a body by its motion. It is the energy of motion.
2. Angular frequency is also called a circular frequency or radial frequency and is defined as the measurement of the angular displacement per unit time.
Note: 1. Jean Buridan who is the discoverer of momentum also discovered angular momentum.
2. As the mass increases, the angular momentum also increases. Hence we can say that the mass will be directly proportional to the angular momentum.
3. Angular momentum also depends on the rotational velocity and the rotational inertia. Whenever the object changes its shape, the angular velocity changes, and thus the angular momentum also changes.
Complete step by step solution:
Given data:
Initial angular momentum = L
Initial angular frequency = $\omega $
Initial Kinetic energy = k
Final angular frequency, ${\omega ‘} = 2\omega $
Final Kinetic energy, ${k’} = \dfrac{k}{2}$
Final angular momentum =?
We know that angular momentum is given by the formula, $L = mvr$
And also we know that, $v = r\omega $
Thus L can be written as, $L = m\omega {r^2}$
The kinetic energy is given by the formula, $k = \dfrac{1}{2}m{v^2}$
We can also write angular momentum in terms of Inertia and angular frequency as, $L = I\omega $
Thus kinetic energy becomes, $k = \dfrac{1}{2}I{\omega ^2}$
$\therefore $Final Inertia, ${I’} = \dfrac{1}{8}I$
Thus substituting the value of ${I’}, {\omega '}$, we get,
$\Rightarrow {L'} = \dfrac{1}{8}I \times 2\omega = \dfrac{1}{4}I\omega $ $\Rightarrow \left( {\because {L'} = {I'}{\omega '}} \right)$
$\Rightarrow {L'} = \dfrac{L}{4}$ $\left( {\because L = I\omega } \right)$
Thus the final angular momentum becomes, ${L'} = \dfrac{L}{4}$.
Hence the correct option is D.
Additional Information:
1. Kinetic energy is defined as the energy possessed by a body by its motion. It is the energy of motion.
2. Angular frequency is also called a circular frequency or radial frequency and is defined as the measurement of the angular displacement per unit time.
Note: 1. Jean Buridan who is the discoverer of momentum also discovered angular momentum.
2. As the mass increases, the angular momentum also increases. Hence we can say that the mass will be directly proportional to the angular momentum.
3. Angular momentum also depends on the rotational velocity and the rotational inertia. Whenever the object changes its shape, the angular velocity changes, and thus the angular momentum also changes.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

