
A polyatomic ideal gas has 24 vibrational modes. What is the value of \[\gamma \] ?
A. 1.03
B. 1.30
C. 10.3
D. 1.37
Answer
232.8k+ views
Hint:Before we start addressing the problem, we need to know about the polyatomic gas and degrees of freedom. A polyatomic gas is one that has more than 2 atoms in one molecule and it must have more than or equal to 6 degrees of freedom. The degree of freedom is defined as the number of coordinates required to specify the position of all the atoms in a molecule.
Formula Used:
To find the formula for \[\gamma \]we have,
\[\gamma = 1 + \dfrac{2}{f}\]
Where, f is the number of degrees of freedom.
Complete step by step solution:
The equation for \[\gamma \] is,
\[\gamma = 1 + \dfrac{2}{f}\] ………… (1)
Since, the number of degrees of freedom is due to translation, rotation, vibration, then
\[f = T + R + V\]
That is since each vibrational mode has 2 degrees of freedom hence total vibrational degrees of freedom is 48.
\[f = 3 + 3 + 48\]
\[\Rightarrow f = 54\]
Now, substitute the value of f in the equation (1) we get,
\[\gamma = 1 + \dfrac{2}{{54}}\]
\[\therefore \gamma = 1.037\]
Therefore, the value of \[\gamma \] is 1.03.
Hence, Option A is the correct answer
Note:The ratio of the specific heats \[\gamma = \dfrac{{{C_P}}}{{{C_V}}}\] is a factor that determines the speed of sound in a gas. A polyatomic gas has basically three translations that are, translational, rotational, and vibrational mode as used in this question. Hence, the degree of freedom for polyatomic gas is greater than or equal to 6. The value of \[\gamma \] for the polyatomic gas is greater than one. There are some examples of polyatomic gases, they are helium, radon, neon, xenon, argon, etc.
Formula Used:
To find the formula for \[\gamma \]we have,
\[\gamma = 1 + \dfrac{2}{f}\]
Where, f is the number of degrees of freedom.
Complete step by step solution:
The equation for \[\gamma \] is,
\[\gamma = 1 + \dfrac{2}{f}\] ………… (1)
Since, the number of degrees of freedom is due to translation, rotation, vibration, then
\[f = T + R + V\]
That is since each vibrational mode has 2 degrees of freedom hence total vibrational degrees of freedom is 48.
\[f = 3 + 3 + 48\]
\[\Rightarrow f = 54\]
Now, substitute the value of f in the equation (1) we get,
\[\gamma = 1 + \dfrac{2}{{54}}\]
\[\therefore \gamma = 1.037\]
Therefore, the value of \[\gamma \] is 1.03.
Hence, Option A is the correct answer
Note:The ratio of the specific heats \[\gamma = \dfrac{{{C_P}}}{{{C_V}}}\] is a factor that determines the speed of sound in a gas. A polyatomic gas has basically three translations that are, translational, rotational, and vibrational mode as used in this question. Hence, the degree of freedom for polyatomic gas is greater than or equal to 6. The value of \[\gamma \] for the polyatomic gas is greater than one. There are some examples of polyatomic gases, they are helium, radon, neon, xenon, argon, etc.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

