Answer
Verified
111.9k+ views
Hint: In this solution, we will use the law of conservation of linear momentum. In the absence of an external force, the net momentum of a system remains conserved in all directions.
Formula used: In this solution, we will use the following formula:
Momentum of an object $\vec p = m\vec v$ where $m$ is the mass and $\vec v$ is the velocity of the object.
Complete step by step answer:
When the shell at rest at origin explodes into three fragments, there is no external force acting on the shell. This implies that the net momentum of the system should remain zero, that is the net momentum of all the three fragments should add up to zero.
Now the two fragments with mass 1 and 2 kg respectively fly off with speeds \[12m/s\] along the x-axis and \[8m/s\] along the y-axis respectively.
To conserve momentum, the momentum of the first two masses should be equal to the momentum of the third mass.
Let us do this by calculating the net momentum of the masses of 1 and 2 kg respectively.
The momentum of those two masses will be
$\overrightarrow {{P_{1,2}}} = (1)(12)\hat i + (2)(8)\hat j$
$ \Rightarrow \overrightarrow {{P_{1,2}}} = 12\hat i + 16\hat j$
The magnitude of this momentum will be
$\left| {\overrightarrow {{P_{1,2}}} } \right| = \sqrt {{{12}^2} + {{16}^2}} = 20$
This net momentum should be equal to the momentum of the third mass to conserve the net momentum of the system i.e. $\left| {\overrightarrow {{P_{1,2}}} } \right| = \left| {\overrightarrow {{P_3}} } \right|$. Since the third mass moves with a velocity of \[40m/s\], its mass can be calculated as
\[{m_3} = \dfrac{{\left| {\overrightarrow {{P_3}} } \right|}}{{\left| {{v_3}} \right|}}\]
\[ \Rightarrow {m_3} = \dfrac{{20}}{{40}} = 0.5\,kg\]
Hence the mass of the third fragment is $0.5\,kg$. So the mass of the entire shell will be
\[M = 1 + 2 + 0.5\]
\[ \Rightarrow M = 3.5\,kg\] which corresponds to option (C).
Note: While calculating the momentum of the third fragment using the momentum of the first and the second fragment, we should directly take the magnitude of their net momentum as we’ve directly been given the velocity of the third fragment and we’re not concerned with its direction but only the magnitude of its momentum.
Formula used: In this solution, we will use the following formula:
Momentum of an object $\vec p = m\vec v$ where $m$ is the mass and $\vec v$ is the velocity of the object.
Complete step by step answer:
When the shell at rest at origin explodes into three fragments, there is no external force acting on the shell. This implies that the net momentum of the system should remain zero, that is the net momentum of all the three fragments should add up to zero.
Now the two fragments with mass 1 and 2 kg respectively fly off with speeds \[12m/s\] along the x-axis and \[8m/s\] along the y-axis respectively.
To conserve momentum, the momentum of the first two masses should be equal to the momentum of the third mass.
Let us do this by calculating the net momentum of the masses of 1 and 2 kg respectively.
The momentum of those two masses will be
$\overrightarrow {{P_{1,2}}} = (1)(12)\hat i + (2)(8)\hat j$
$ \Rightarrow \overrightarrow {{P_{1,2}}} = 12\hat i + 16\hat j$
The magnitude of this momentum will be
$\left| {\overrightarrow {{P_{1,2}}} } \right| = \sqrt {{{12}^2} + {{16}^2}} = 20$
This net momentum should be equal to the momentum of the third mass to conserve the net momentum of the system i.e. $\left| {\overrightarrow {{P_{1,2}}} } \right| = \left| {\overrightarrow {{P_3}} } \right|$. Since the third mass moves with a velocity of \[40m/s\], its mass can be calculated as
\[{m_3} = \dfrac{{\left| {\overrightarrow {{P_3}} } \right|}}{{\left| {{v_3}} \right|}}\]
\[ \Rightarrow {m_3} = \dfrac{{20}}{{40}} = 0.5\,kg\]
Hence the mass of the third fragment is $0.5\,kg$. So the mass of the entire shell will be
\[M = 1 + 2 + 0.5\]
\[ \Rightarrow M = 3.5\,kg\] which corresponds to option (C).
Note: While calculating the momentum of the third fragment using the momentum of the first and the second fragment, we should directly take the magnitude of their net momentum as we’ve directly been given the velocity of the third fragment and we’re not concerned with its direction but only the magnitude of its momentum.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Radius of the largest circle which passes through -class-11-maths-JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main