A simple pendulum has a time period $T = 2$ sec in air. If the whole arrangement is placed in a non viscous liquid whose density is $1/2$ times the density of bob. The time period of the simple pendulum in the liquid will be
(A) $\dfrac{1}{{\sqrt 2 }}$ sec
(B) $4$ sec
(C) $2\sqrt 2 $ sec
(D) $4\sqrt 2 $ sec
Answer
Verified
122.7k+ views
Hint: To solve this question, we need to use the formula for the time period of a simple pendulum. Then, we have to find out the effective acceleration due to gravity in the liquid. Substituting it in the formula for the time period, we will get the final answer.
Formula used: The formula used for solving this question is given by
$T = 2\pi \sqrt {\dfrac{l}{{{g_{eff}}}}} $, here $T$ is the time period of a simple pendulum whose string has a length of $l$, and ${g_{eff}}$ is the effective acceleration due to gravity.
Complete step-by-step solution:
Let the density of the bob of the simple pendulum be $\rho $ and that of the given non-viscous liquid be $\sigma $. According to the question, the density of the liquid is half of the density of the bob. So we can write
$\sigma = \dfrac{\rho }{2}$.............(1)
Now, let the length of the string of the given pendulum be $l$. We know that the time period of a simple pendulum is given by
$T = 2\pi \sqrt {\dfrac{l}{{{g_{eff}}}}} $..........(2)
According to the question, $T = 2s$ in air. We know that the effective acceleration due to gravity in air is equal to $g$. Therefore, substituting these in (2) we get
$2 = 2\pi \sqrt {\dfrac{l}{g}} $
Or
$2\pi \sqrt {\dfrac{l}{g}} = 2$ …………. (3)
When the pendulum is dipped inside the liquid, then the liquid will apply an upward force on the bob. We know from the Archimedes’ Principle that the magnitude of this upward force is equal to the weight of the fluid displaced. Since the whole of the bob is inside the liquid, the volume displaced by the bob is equal to the volume of the bob. If the mass of the bob is equal to $m$, then its volume can be given by
$V = \dfrac{m}{\rho }$ ……….(4)
Since the density of the fluid is $\sigma $, so the mass of the displaced fluid becomes
$m' = V\sigma $
From (4)
$m' = \dfrac{{m\sigma }}{\rho }$
So the weight of the fluid displaced, or the upward force on the bob becomes
$U = m'g$
$ \Rightarrow U = \dfrac{{m\sigma }}{\rho }g$...................(5)
The weight of the bob which will act vertically downwards on the bob is given by
$W = mg$...............(6)
So the net downward force on the bob becomes
$F = W - U$
Putting (5) and (6) in the above equation, we get
$F = mg - \dfrac{{m\sigma }}{\rho }g$
\[F = mg\left( {1 - \dfrac{\sigma }{\rho }} \right)\]..................(7)
The effective acceleration due to gravity is equal to the net downward force on the body per unit mass. So the effective acceleration due to gravity becomes
${g_{eff}} = \dfrac{F}{m}$
From (7)
${g_{eff}} = \dfrac{{mg}}{m}\left( {1 - \dfrac{\sigma }{\rho }} \right)$
$ \Rightarrow {g_{eff}} = \left( {1 - \dfrac{\sigma }{\rho }} \right)g$
Putting (1) in the above equation, we get
${g_{eff}} = \left( {1 - \dfrac{1}{2}} \right)g$
$ \Rightarrow {g_{eff}} = \dfrac{g}{2}$
Substituting this in (2) we get the required time period of the given pendulum as
$T' = 2\pi \sqrt {\dfrac{l}{{g/2}}} $
$T' = 2\pi \sqrt {\dfrac{l}{g}} \sqrt 2 $
Substituting (3) in the above equation, we finally get
$T' = 2\sqrt 2 s$
Thus, the time period of the simple pendulum in the liquid will be equal to $2\sqrt 2 $ sec.
Hence the correct answer is option C.
Note: Do not think that the upward force on the bob will make the string of the pendulum loose. This is because the net force on the bob is still downwards not upwards.
Formula used: The formula used for solving this question is given by
$T = 2\pi \sqrt {\dfrac{l}{{{g_{eff}}}}} $, here $T$ is the time period of a simple pendulum whose string has a length of $l$, and ${g_{eff}}$ is the effective acceleration due to gravity.
Complete step-by-step solution:
Let the density of the bob of the simple pendulum be $\rho $ and that of the given non-viscous liquid be $\sigma $. According to the question, the density of the liquid is half of the density of the bob. So we can write
$\sigma = \dfrac{\rho }{2}$.............(1)
Now, let the length of the string of the given pendulum be $l$. We know that the time period of a simple pendulum is given by
$T = 2\pi \sqrt {\dfrac{l}{{{g_{eff}}}}} $..........(2)
According to the question, $T = 2s$ in air. We know that the effective acceleration due to gravity in air is equal to $g$. Therefore, substituting these in (2) we get
$2 = 2\pi \sqrt {\dfrac{l}{g}} $
Or
$2\pi \sqrt {\dfrac{l}{g}} = 2$ …………. (3)
When the pendulum is dipped inside the liquid, then the liquid will apply an upward force on the bob. We know from the Archimedes’ Principle that the magnitude of this upward force is equal to the weight of the fluid displaced. Since the whole of the bob is inside the liquid, the volume displaced by the bob is equal to the volume of the bob. If the mass of the bob is equal to $m$, then its volume can be given by
$V = \dfrac{m}{\rho }$ ……….(4)
Since the density of the fluid is $\sigma $, so the mass of the displaced fluid becomes
$m' = V\sigma $
From (4)
$m' = \dfrac{{m\sigma }}{\rho }$
So the weight of the fluid displaced, or the upward force on the bob becomes
$U = m'g$
$ \Rightarrow U = \dfrac{{m\sigma }}{\rho }g$...................(5)
The weight of the bob which will act vertically downwards on the bob is given by
$W = mg$...............(6)
So the net downward force on the bob becomes
$F = W - U$
Putting (5) and (6) in the above equation, we get
$F = mg - \dfrac{{m\sigma }}{\rho }g$
\[F = mg\left( {1 - \dfrac{\sigma }{\rho }} \right)\]..................(7)
The effective acceleration due to gravity is equal to the net downward force on the body per unit mass. So the effective acceleration due to gravity becomes
${g_{eff}} = \dfrac{F}{m}$
From (7)
${g_{eff}} = \dfrac{{mg}}{m}\left( {1 - \dfrac{\sigma }{\rho }} \right)$
$ \Rightarrow {g_{eff}} = \left( {1 - \dfrac{\sigma }{\rho }} \right)g$
Putting (1) in the above equation, we get
${g_{eff}} = \left( {1 - \dfrac{1}{2}} \right)g$
$ \Rightarrow {g_{eff}} = \dfrac{g}{2}$
Substituting this in (2) we get the required time period of the given pendulum as
$T' = 2\pi \sqrt {\dfrac{l}{{g/2}}} $
$T' = 2\pi \sqrt {\dfrac{l}{g}} \sqrt 2 $
Substituting (3) in the above equation, we finally get
$T' = 2\sqrt 2 s$
Thus, the time period of the simple pendulum in the liquid will be equal to $2\sqrt 2 $ sec.
Hence the correct answer is option C.
Note: Do not think that the upward force on the bob will make the string of the pendulum loose. This is because the net force on the bob is still downwards not upwards.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line