
A slab of glass, of thickness 6 cm and refractive index \[\mu = 1.5\] is placed in front of a concave mirror as shown in the figure. If the radius of curvature of the mirror is 40 cm and the reflected image coincides with the object, then the distance of the object from the mirror is.

(A) 30cm
(B) 22cm
(C) 42cm
(D) 38cm
Answer
225.3k+ views
Hint It is given that the given mirror is concave. Hence the image formed will be upside down and its magnification depends upon its position placed. Use the shift produced by a glass slab of different refractive index formula to find the shift and add the value with radius of curvature to find the object distance.
Complete Step By Step Solution
Concave mirrors are examples of converging mirrors. The image produced due to reflection will naturally be inverted and real in nature. Now , when a glss slab of selective refractive index is placed in front of the object at a distance, the image produced will not be clear but rather will seem to be deflected from its original form.
It is also said that the reflected image will coincide with the object. In a concave mirror , this is only possible when the object is placed at the radius of curvature of the mirror.
Now radius of curvature of the mirror is given as,
\[R = 40cm\], thus it’s focal length is equal to\[f = 20cm\].
Now in the final image, the shift from the original object to the final image produced by the slab of refractive index is calculated using,
\[s = t[1 - \dfrac{1}{\mu }]\], where s is the shift produced due to the slab, t is the thickness of the glass slab and \[\mu \]is the refractive index of the given glass slab.
\[ \Rightarrow s = 6 \times [1 - \dfrac{1}{{1.5}}]\]
\[ \Rightarrow s = 6 \times [\dfrac{1}{3}]\]
\[ \Rightarrow s = 2cm\]
Now, we know that there is a 2cm shift in the object due to the presence of the glass slab. Therefore the initial position of object will be
\[R + s = 40cm + 2cm = 42cm\]
Therefore, Option (c) is the right answer.
Note Refractive index of any material is defined as the number that determines how fast the light travels through another medium from one medium. It is mathematically given as the ratio between speed of light and the velocity of the light in the second medium.
Complete Step By Step Solution
Concave mirrors are examples of converging mirrors. The image produced due to reflection will naturally be inverted and real in nature. Now , when a glss slab of selective refractive index is placed in front of the object at a distance, the image produced will not be clear but rather will seem to be deflected from its original form.
It is also said that the reflected image will coincide with the object. In a concave mirror , this is only possible when the object is placed at the radius of curvature of the mirror.
Now radius of curvature of the mirror is given as,
\[R = 40cm\], thus it’s focal length is equal to\[f = 20cm\].
Now in the final image, the shift from the original object to the final image produced by the slab of refractive index is calculated using,
\[s = t[1 - \dfrac{1}{\mu }]\], where s is the shift produced due to the slab, t is the thickness of the glass slab and \[\mu \]is the refractive index of the given glass slab.
\[ \Rightarrow s = 6 \times [1 - \dfrac{1}{{1.5}}]\]
\[ \Rightarrow s = 6 \times [\dfrac{1}{3}]\]
\[ \Rightarrow s = 2cm\]
Now, we know that there is a 2cm shift in the object due to the presence of the glass slab. Therefore the initial position of object will be
\[R + s = 40cm + 2cm = 42cm\]
Therefore, Option (c) is the right answer.
Note Refractive index of any material is defined as the number that determines how fast the light travels through another medium from one medium. It is mathematically given as the ratio between speed of light and the velocity of the light in the second medium.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

