Answer
Verified
99.9k+ views
Hint: Before we start addressing the problem, we need to know about the linear and angular velocity. The velocity at which the body moves in a linear motion is known as linear velocity. The velocity at which the body moves in a rotational motion is known as angular velocity.
Formula Used:
The formula for the relation between linear and angular velocity is,
\[v = r\omega \]
Where, v is linear velocity, r is radius and \[\omega \]is angular velocity.
Complete step by step solution:
Consider a small roller placed on the horizontal floor of diameter 20 cm has an axle of a diameter of 10cm, a meter scale is positioned horizontally on its axle with one edge of the scale on top of the axle. Now the scale is pushed slowly on the axle so that it moves without slipping on the axle, and the roller starts rolling without slipping. After the roller has moved 50 cm, then we need to find how the position of the scale will look.
So, \[{d_1} = 10cm\], \[{r_1} = 5cm\], \[{d_2} = 20cm\]and \[{r_2} = 10cm\]
Now, \[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{5}{{10}}\]
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{1}{2}\]
If the ratio of the radius of the axle to the roller is \[\dfrac{1}{2}\] then, the radius of the axle is r and the radius of the roller is 2r. As shown in figure, the velocity at the center is \[{v_{cm}} = v\]it is moving with an angular velocity \[\omega \]without slipping. Then,
\[v = r\omega \]
\[\omega = \dfrac{v}{r}\]
Since, \[r = 2r\](radius of roller)
\[\omega = \dfrac{v}{{2r}}\]
Now, we want to find the velocity at point A. Here, the axle will roll as well as move forward having both translational and rotational velocity that is,
\[v + \dfrac{v}{{2r}} \times r\]
\[ \Rightarrow \dfrac{{3v}}{2}\]
After some time the roller has moved 50 cm on the ground that is, \[v \times t = 50cm\]. Then, the distance will be,
\[ \Rightarrow x = \dfrac{{3\left( {v \times t} \right)}}{2}\]
\[ \Rightarrow x = \dfrac{{3\left( {50} \right)}}{2}\]
\[ \therefore x = 75\,cm\]
Therefore, the position of the scale is 75 cm.
Hence, Option B is the correct answer
Note:Remember that, if a sphere of some radius r is rolling with some speed v, then it has both linear and angular velocity and the relation between these two is given by, \[v = r\omega \].
Formula Used:
The formula for the relation between linear and angular velocity is,
\[v = r\omega \]
Where, v is linear velocity, r is radius and \[\omega \]is angular velocity.
Complete step by step solution:
Consider a small roller placed on the horizontal floor of diameter 20 cm has an axle of a diameter of 10cm, a meter scale is positioned horizontally on its axle with one edge of the scale on top of the axle. Now the scale is pushed slowly on the axle so that it moves without slipping on the axle, and the roller starts rolling without slipping. After the roller has moved 50 cm, then we need to find how the position of the scale will look.
So, \[{d_1} = 10cm\], \[{r_1} = 5cm\], \[{d_2} = 20cm\]and \[{r_2} = 10cm\]
Now, \[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{5}{{10}}\]
\[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{1}{2}\]
If the ratio of the radius of the axle to the roller is \[\dfrac{1}{2}\] then, the radius of the axle is r and the radius of the roller is 2r. As shown in figure, the velocity at the center is \[{v_{cm}} = v\]it is moving with an angular velocity \[\omega \]without slipping. Then,
\[v = r\omega \]
\[\omega = \dfrac{v}{r}\]
Since, \[r = 2r\](radius of roller)
\[\omega = \dfrac{v}{{2r}}\]
Now, we want to find the velocity at point A. Here, the axle will roll as well as move forward having both translational and rotational velocity that is,
\[v + \dfrac{v}{{2r}} \times r\]
\[ \Rightarrow \dfrac{{3v}}{2}\]
After some time the roller has moved 50 cm on the ground that is, \[v \times t = 50cm\]. Then, the distance will be,
\[ \Rightarrow x = \dfrac{{3\left( {v \times t} \right)}}{2}\]
\[ \Rightarrow x = \dfrac{{3\left( {50} \right)}}{2}\]
\[ \therefore x = 75\,cm\]
Therefore, the position of the scale is 75 cm.
Hence, Option B is the correct answer
Note:Remember that, if a sphere of some radius r is rolling with some speed v, then it has both linear and angular velocity and the relation between these two is given by, \[v = r\omega \].
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A tetracyanomethane B carbon dioxide C benzene and class 11 chemistry JEE_Main
Two billiard balls of the same size and mass are in class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Find the moment of inertia through the face diagonal class 11 physics JEE_Main
A block A slides over another block B which is placed class 11 physics JEE_Main
The shape of XeF5 + ion is A Pentagonal B Octahedral class 11 chemistry JEE_Main