
A sniper fires a rifle bullet into a gasoline tank making a hole $53.0m$ below the surface of gasoline. The tank was sealed at $3.10atm$. The stored gasoline has a density of \[660kg{m^{ - 3}}\]. The velocity with which gasoline begins to shoot out of the hole is
(A) $27.8m{s^{ - 1}}$
(B) $41.0m{s^{ - 1}}$
(C) $9.6m{s^{ - 1}}$
(D) $19.7m{s^{ - 1}}$
Answer
133.5k+ views
Hint: Bernoulli’s equation formula is a relation between pressure, kinetic energy, and gravitational potential energy of a fluid in a container. Bernoulli’s principle can be derived from the principle of conservation of energy.
Formula Used: The formulae used in the solution are given here.
Bernoulli’s theorem:
${P_0} + h\rho g = \dfrac{1}{2}\rho {v^2}$ where ${P_0}$ is the sealing pressure of the tank, $h$ is the depth of hole below the surface of gasoline, $\rho $ is the density of the stored gasoline, $v$ is the velocity with which gasoline begins to shoot out of the hole.
Complete Step by Step Solution: Bernoulli’s principle states that, the total mechanical energy of the moving fluid comprising the gravitational potential energy of elevation, the energy associated with the fluid pressure and the kinetic energy of the fluid motion, remains constant.
It has been given that a sniper fires a rifle bullet into a gasoline tank making a hole $53.0m$ below the surface of gasoline. The tank was sealed at $3.10atm$. The stored gasoline has a density of \[660kg{m^{ - 3}}\]. By Bernoulli’s theorem, we can write,
${P_0} + h\rho g = \dfrac{1}{2}\rho {v^2}$ where ${P_0}$ is the sealing pressure of the tank, $h$ is the depth of hole below the surface of gasoline, $\rho $ is the density of the stored gasoline, $v$ is the velocity with which gasoline begins to shoot out of the hole.
We assign values given in the question to the variables in the equation. Therefore,
${P_0} = 3.10 \times {10^5}$, $h = 53$, \[\rho = 660kg{m^{ - 3}}\].
We assume that the acceleration due to gravity $g = 10m/{s^2}$.
Substituting the values, we get, $3.10 \times {10^5} + 53 \times 660 \times 10 = \dfrac{1}{2} \times 660 \times {v^2}$.
Simplifying the equation, we get, ${v^2} = \dfrac{{3.10 \times {{10}^5} + 53 \times 660 \times 10}}{{330}}$
$v = \sqrt {3.10 \times {{10}^5} + 530 \times 2} = 41m{s^{ - 1}}$
Hence, the correct answer is Option B.
Note: Bernoulli’s principle Although Bernoulli deduced the law, it was Leonhard Euler who derived Bernoulli’s equation in its usual form in the year 1752. Formulated by Daniel Bernoulli states that as the speed of a moving fluid increases (liquid or gas), the pressure within the fluid decreases.
Formula Used: The formulae used in the solution are given here.
Bernoulli’s theorem:
${P_0} + h\rho g = \dfrac{1}{2}\rho {v^2}$ where ${P_0}$ is the sealing pressure of the tank, $h$ is the depth of hole below the surface of gasoline, $\rho $ is the density of the stored gasoline, $v$ is the velocity with which gasoline begins to shoot out of the hole.
Complete Step by Step Solution: Bernoulli’s principle states that, the total mechanical energy of the moving fluid comprising the gravitational potential energy of elevation, the energy associated with the fluid pressure and the kinetic energy of the fluid motion, remains constant.
It has been given that a sniper fires a rifle bullet into a gasoline tank making a hole $53.0m$ below the surface of gasoline. The tank was sealed at $3.10atm$. The stored gasoline has a density of \[660kg{m^{ - 3}}\]. By Bernoulli’s theorem, we can write,
${P_0} + h\rho g = \dfrac{1}{2}\rho {v^2}$ where ${P_0}$ is the sealing pressure of the tank, $h$ is the depth of hole below the surface of gasoline, $\rho $ is the density of the stored gasoline, $v$ is the velocity with which gasoline begins to shoot out of the hole.
We assign values given in the question to the variables in the equation. Therefore,
${P_0} = 3.10 \times {10^5}$, $h = 53$, \[\rho = 660kg{m^{ - 3}}\].
We assume that the acceleration due to gravity $g = 10m/{s^2}$.
Substituting the values, we get, $3.10 \times {10^5} + 53 \times 660 \times 10 = \dfrac{1}{2} \times 660 \times {v^2}$.
Simplifying the equation, we get, ${v^2} = \dfrac{{3.10 \times {{10}^5} + 53 \times 660 \times 10}}{{330}}$
$v = \sqrt {3.10 \times {{10}^5} + 530 \times 2} = 41m{s^{ - 1}}$
Hence, the correct answer is Option B.
Note: Bernoulli’s principle Although Bernoulli deduced the law, it was Leonhard Euler who derived Bernoulli’s equation in its usual form in the year 1752. Formulated by Daniel Bernoulli states that as the speed of a moving fluid increases (liquid or gas), the pressure within the fluid decreases.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
