A solid cylinder of mass $M$ and radius $R$ rolls without slipping down an inclined plane of length $L$ and height $h$. What is the speed of its centre of mass when the cylinder reaches its bottom?
(A) $\sqrt {2gh} $
(B) $\sqrt {\dfrac{3}{4}gh} $
(C) $\sqrt {\dfrac{4}{3}gh} $
(D) $\sqrt {4gh} $
Answer
Verified
122.7k+ views
Hint Here given the cylinder is rolling without slipping down on an inclined plane. We have to find the speed of its centre of mass when the cylinder reaches the bottom. This problem can be solved by using the conservation of energy according to which when the body reaches the bottom its total potential energy is converted into kinetic energy we will obtain the velocity of the center of mass of the cylinder.
Formula used:
Conservation of total energy
$P.E = K.{E_{rot.}} + K.{E_{trans.}}$
where $K.{E_{rot.}}$= kinetic energy due to the rotation
$K.{E_{trans.}}$= kinetic energy due to translation
Complete Step by step solution
Here our cylinder is solid and it consists of potential energy when it is at rest. As our body starts rolling its potential energy starts converting into kinetic energy. The motion of the cylinder will involve two types of kinetic energy one due to motion in a straight line which is known as translational kinetic energy and another due to circular motion which is known as rotational kinetic energy.
Hence according to total conservation of energy, we can deduce that
$P.E = K.{E_{rot.}} + K.{E_{trans.}}$
where potential energy $P.E = mgh$
Kinetic energy due to translation $K.{E_{trans.}} = \dfrac{1}{2}M{v^2}$,
Kinetic energy due to the rotation $K.{E_{rot.}} = \dfrac{1}{2}I{\omega ^2}$
Now the equation can be given as
$Mgh = \dfrac{1}{2}I{\omega ^2} + \dfrac{1}{2}M{v^2}$ --------------- Equation $(1)$
where $h$= height of an inclined plane
$v$= translational velocity
$\omega $= rotational velocity
$I$= moment of inertia
$M$=mass of the cylinder
Now as our cylinder is rolling without slipping hence our rotation is pure as a result $v = \omega R$, where $R$is the radius of the cylinder.
Also moment of inertia $I = \dfrac{{M{R^2}}}{2}$
Substituting the values of $I$and $v$ into the equation $(1)$ we get
$Mgh = \dfrac{1}{2}{\dfrac{{MR}}{2}^2} \times \dfrac{{{v^2}}}{{{R^2}}} + \dfrac{1}{2}M{v^2}$
$ \Rightarrow Mgh = \dfrac{M}{4} \times {v^2} + \dfrac{1}{2}M{v^2}$
Now eliminating the mass also from both side
$gh = \dfrac{1}{4}{v^2} + \dfrac{1}{2}{v^2}$
$ \Rightarrow gh = \dfrac{3}{4}{v^2}$
Rearranging the terms by transposition
$ \Rightarrow {v^2} = \dfrac{4}{3}gh$
$\therefore v = \sqrt {\dfrac{4}{3}gh} $
Hence the velocity of the Centre of the mass of cylinder rolling without slipping is $v = \sqrt {\dfrac{4}{3}gh} $.
Hence option (C) is the correct answer.
Note One should be aware of the difference between rotational kinetic energy and translational kinetic energy is that translational occurs due to straight-line motion while rotational kinetic energy occurs due to circular rotation.
Formula used:
Conservation of total energy
$P.E = K.{E_{rot.}} + K.{E_{trans.}}$
where $K.{E_{rot.}}$= kinetic energy due to the rotation
$K.{E_{trans.}}$= kinetic energy due to translation
Complete Step by step solution
Here our cylinder is solid and it consists of potential energy when it is at rest. As our body starts rolling its potential energy starts converting into kinetic energy. The motion of the cylinder will involve two types of kinetic energy one due to motion in a straight line which is known as translational kinetic energy and another due to circular motion which is known as rotational kinetic energy.
Hence according to total conservation of energy, we can deduce that
$P.E = K.{E_{rot.}} + K.{E_{trans.}}$
where potential energy $P.E = mgh$
Kinetic energy due to translation $K.{E_{trans.}} = \dfrac{1}{2}M{v^2}$,
Kinetic energy due to the rotation $K.{E_{rot.}} = \dfrac{1}{2}I{\omega ^2}$
Now the equation can be given as
$Mgh = \dfrac{1}{2}I{\omega ^2} + \dfrac{1}{2}M{v^2}$ --------------- Equation $(1)$
where $h$= height of an inclined plane
$v$= translational velocity
$\omega $= rotational velocity
$I$= moment of inertia
$M$=mass of the cylinder
Now as our cylinder is rolling without slipping hence our rotation is pure as a result $v = \omega R$, where $R$is the radius of the cylinder.
Also moment of inertia $I = \dfrac{{M{R^2}}}{2}$
Substituting the values of $I$and $v$ into the equation $(1)$ we get
$Mgh = \dfrac{1}{2}{\dfrac{{MR}}{2}^2} \times \dfrac{{{v^2}}}{{{R^2}}} + \dfrac{1}{2}M{v^2}$
$ \Rightarrow Mgh = \dfrac{M}{4} \times {v^2} + \dfrac{1}{2}M{v^2}$
Now eliminating the mass also from both side
$gh = \dfrac{1}{4}{v^2} + \dfrac{1}{2}{v^2}$
$ \Rightarrow gh = \dfrac{3}{4}{v^2}$
Rearranging the terms by transposition
$ \Rightarrow {v^2} = \dfrac{4}{3}gh$
$\therefore v = \sqrt {\dfrac{4}{3}gh} $
Hence the velocity of the Centre of the mass of cylinder rolling without slipping is $v = \sqrt {\dfrac{4}{3}gh} $.
Hence option (C) is the correct answer.
Note One should be aware of the difference between rotational kinetic energy and translational kinetic energy is that translational occurs due to straight-line motion while rotational kinetic energy occurs due to circular rotation.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line