Answer
Verified
110.4k+ views
Hint: This question can easily be solved, if we know the relation between work done and energy. Also, according to the question, the block has to be turned. So, we need to calculate the respective height to which it is turned. After this, finally we can conclude with the solution.
Complete step by step solution:
We know that, change in kinetic energy = change in potential energy = work done
This can also be represented as, \[\Delta K.E = \Delta P.E = W\]
Since, the block is in static position and after turning it again it will be in static position, so there will be change in its potential energy.
The mass of the rectangular block is given as $200kg$.
Initially, the block was laying on a horizontal floor on the sides l and b. After turning the block will lie on sides b and h. So, the new length will be at the center of the length, i.e. $\dfrac{l}{2}$ and the new height will be at centre of the height, i.e. $\dfrac{h}{2}$.
Now, using the relation of energy and work from step one we can write it as,
$W = \Delta P.E$
$ \Rightarrow W = mg\dfrac{l}{2} - mg\dfrac{h}{2}$
$ \Rightarrow W = mg\left( {\dfrac{l}{2} - \dfrac{h}{2}} \right)$
$ \Rightarrow W = 200 \times 10\left( {\dfrac{2}{2} - \dfrac{{0.5}}{2}} \right)$
$\therefore W = 1500J$
Therefore, the required work done is $1500J$.
Hence, option (B), i.e. $1500J$ is the correct choice of the given question.
Note: Potential energy is the energy stored in a body while kinetic energy is the energy gained by a body due to its motion. Also, work done is the force required to displace a body. According to the question due to the force applied in turning the block the position is displaced and accordingly we need to take the respective height on which the mass of the block is concentrated.
Complete step by step solution:
We know that, change in kinetic energy = change in potential energy = work done
This can also be represented as, \[\Delta K.E = \Delta P.E = W\]
Since, the block is in static position and after turning it again it will be in static position, so there will be change in its potential energy.
The mass of the rectangular block is given as $200kg$.
Initially, the block was laying on a horizontal floor on the sides l and b. After turning the block will lie on sides b and h. So, the new length will be at the center of the length, i.e. $\dfrac{l}{2}$ and the new height will be at centre of the height, i.e. $\dfrac{h}{2}$.
Now, using the relation of energy and work from step one we can write it as,
$W = \Delta P.E$
$ \Rightarrow W = mg\dfrac{l}{2} - mg\dfrac{h}{2}$
$ \Rightarrow W = mg\left( {\dfrac{l}{2} - \dfrac{h}{2}} \right)$
$ \Rightarrow W = 200 \times 10\left( {\dfrac{2}{2} - \dfrac{{0.5}}{2}} \right)$
$\therefore W = 1500J$
Therefore, the required work done is $1500J$.
Hence, option (B), i.e. $1500J$ is the correct choice of the given question.
Note: Potential energy is the energy stored in a body while kinetic energy is the energy gained by a body due to its motion. Also, work done is the force required to displace a body. According to the question due to the force applied in turning the block the position is displaced and accordingly we need to take the respective height on which the mass of the block is concentrated.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main