
A spring of spring constant \[5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\;\]is stretched initially by \[5cm\] from the unstretched position. Then the work required to stretch it further by another \[5cm\]is:
1. \[12.50{\rm{N - m}}\]
2. \[{\rm{18}}{\rm{.75N - m}}\]
3. \[{\rm{25N - m}}\]
4. \[{\rm{6}}{\rm{.25N - m}}\]
Answer
233.1k+ views
Hint:Here, the concept that we are going to use is of oscillation in the springs, but here it is not mentioned that the spring is oscillating. It's only one time from an unstretched position, and we have to calculate the other stretch of \[5cm\].
Formula used:
\[{W_i} = \dfrac{1}{2}k{x_i}^2\], \[{W_f} = \dfrac{1}{2}k{x_f}^2\], \[{W_{net}} = {W_f} - {W_i}\]
Complete answer:
Let us begin by sorting out the given data in the question. Here the initial position is taken as \[5cm\] away from unstretched position, therefore, by considering \[{x_i}\] as initial position we have
\[{x_i} = 5cm = 0.05m\]
Similarly, final position is at another \[5cm\] away from the initial position, therefore, by considering \[{x_f}\]as final position we have
\[{x_f} = 5cm + 5cm = 10cm = 0.1m\]
Also, spring constant \[5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\;\]
Work done at initial position is calculated by
\[{W_i} = \dfrac{1}{2}k{x_i}^2\]
Let us put all the given values in the above formula for work done
\[{W_i} = \dfrac{1}{2} \times 5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\; \times {\left( {0.05} \right)^2}{m^2}\]
\[\therefore {W_i} = 6.25N - m\]
Similarly, for final position work done is given by
\[{W_f} = \dfrac{1}{2}k{x_f}^2\]
Now, let us put all the values given in the above formula, we get
\[{W_f} = \dfrac{1}{2} \times 5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}} \times {\left( {0.1} \right)^2}{m^2}\]
\[\therefore {W_f} = 25N - m\]
Now, the work done required for another \[5cm\] stretch is
Net work done, \[{W_{net}} = {W_f} - {W_i}\]
\[{W_{net}} = 25N - 6.25N\] … (from above calculated terms)
\[\therefore {W_{net}} = 18.75~N - m\]
Thus, the total work done is given by \[18.75N - m\], i.e., option 2.
Note: When we talk about net work done we have to calculate it with respect to initial and final work done then only we can be able to solve this type of questions. In this question you must have observed that the initial position does not start from zero because the question itself says consider the first stretch as the initial position.
Formula used:
\[{W_i} = \dfrac{1}{2}k{x_i}^2\], \[{W_f} = \dfrac{1}{2}k{x_f}^2\], \[{W_{net}} = {W_f} - {W_i}\]
Complete answer:
Let us begin by sorting out the given data in the question. Here the initial position is taken as \[5cm\] away from unstretched position, therefore, by considering \[{x_i}\] as initial position we have
\[{x_i} = 5cm = 0.05m\]
Similarly, final position is at another \[5cm\] away from the initial position, therefore, by considering \[{x_f}\]as final position we have
\[{x_f} = 5cm + 5cm = 10cm = 0.1m\]
Also, spring constant \[5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\;\]
Work done at initial position is calculated by
\[{W_i} = \dfrac{1}{2}k{x_i}^2\]
Let us put all the given values in the above formula for work done
\[{W_i} = \dfrac{1}{2} \times 5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}}\; \times {\left( {0.05} \right)^2}{m^2}\]
\[\therefore {W_i} = 6.25N - m\]
Similarly, for final position work done is given by
\[{W_f} = \dfrac{1}{2}k{x_f}^2\]
Now, let us put all the values given in the above formula, we get
\[{W_f} = \dfrac{1}{2} \times 5{\rm{ }} \times {\rm{ }}{10^3}\;N{m^{ - 1}} \times {\left( {0.1} \right)^2}{m^2}\]
\[\therefore {W_f} = 25N - m\]
Now, the work done required for another \[5cm\] stretch is
Net work done, \[{W_{net}} = {W_f} - {W_i}\]
\[{W_{net}} = 25N - 6.25N\] … (from above calculated terms)
\[\therefore {W_{net}} = 18.75~N - m\]
Thus, the total work done is given by \[18.75N - m\], i.e., option 2.
Note: When we talk about net work done we have to calculate it with respect to initial and final work done then only we can be able to solve this type of questions. In this question you must have observed that the initial position does not start from zero because the question itself says consider the first stretch as the initial position.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

