A train passes an electric post in 10 second and a bridge of length 2 km in 110 second. The speed of engine is:
(a) 18 kmph
(b) 36 kmph
(c) 72 kmph
(d) 90 kmph
Answer
Verified
416k+ views
Hint: The above problem can be solved by using the formula of the speed. First calculate the length of the train to find the speed of the engine and then find the speed of the engine.
Complete step by step answer
Given: The time for crossing the post is $t = 10\;{\text{s}}$, the time for crossing the bridge is $T = 110\;{\text{s}}$, the length of the bridge is $L = 2\;{\text{km}} = 2\;{\text{km}} \times \dfrac{{1000\;{\text{m}}}}{{1\;{\text{km}}}} = 2000\;{\text{m}}$.
The equation to find the speed of the engine by using the time to cross the post is given as:
$\Rightarrow$ ${v_1} = \dfrac{l}{t}......\left( 1 \right)$
The equation to find the speed of the engine by using the time to cross the bridge is given as:
$\Rightarrow$${v_2} = \dfrac{{L + l}}{T}......\left( 2 \right)$
The speed of the engine remains the same to cross the post and bridge, so equate the equation (10 and equation (2) to calculate the length of the train.
$\Rightarrow$${v_1} = {v_2}$
$\dfrac{l}{t} = \dfrac{{L + l}}{T}......\left( 3 \right)$
Substitute 2 km for L, 10 s for t and 110 s for T in the equation (3) to find the length of the train.
$\Rightarrow$ $\dfrac{l}{{10\;{\text{s}}}} = \dfrac{{2\;{\text{km}} + l}}{{110\;{\text{s}}}}$
$11l = 2\;{\text{km}} + l$
$\Rightarrow$$10l = 2\;{\text{km}}$
$l = 0.2\;{\text{km}}$
Substitute $0.2\;{\text{km}}$ for l and 10 s for t in the equation (1) to find the speed of the engine.
$\Rightarrow$${v_1} = \dfrac{{0.2\;{\text{km}}}}{{10\;{\text{s}}}}$
${v_1} = \dfrac{{0.2\;{\text{km}}}}{{\left( {10\;{\text{s}} \times \dfrac{{1\;{\text{h}}}}{{3600\;{\text{s}}}}} \right)}}$
$\Rightarrow$${v_1} = 72\;{\text{km}}/{\text{h}}$
Thus, the speed of the engine is $72\;{\text{km}}/{\text{h}}$ and the option (c) is the correct answer.
Note:
The above problem can also be solved by the concept of the relative motion. The resultant speed becomes equal to the sum of the speed of both objects if both objects move in opposite directions and become equal to subtraction of speed of both objects.
Complete step by step answer
Given: The time for crossing the post is $t = 10\;{\text{s}}$, the time for crossing the bridge is $T = 110\;{\text{s}}$, the length of the bridge is $L = 2\;{\text{km}} = 2\;{\text{km}} \times \dfrac{{1000\;{\text{m}}}}{{1\;{\text{km}}}} = 2000\;{\text{m}}$.
The equation to find the speed of the engine by using the time to cross the post is given as:
$\Rightarrow$ ${v_1} = \dfrac{l}{t}......\left( 1 \right)$
The equation to find the speed of the engine by using the time to cross the bridge is given as:
$\Rightarrow$${v_2} = \dfrac{{L + l}}{T}......\left( 2 \right)$
The speed of the engine remains the same to cross the post and bridge, so equate the equation (10 and equation (2) to calculate the length of the train.
$\Rightarrow$${v_1} = {v_2}$
$\dfrac{l}{t} = \dfrac{{L + l}}{T}......\left( 3 \right)$
Substitute 2 km for L, 10 s for t and 110 s for T in the equation (3) to find the length of the train.
$\Rightarrow$ $\dfrac{l}{{10\;{\text{s}}}} = \dfrac{{2\;{\text{km}} + l}}{{110\;{\text{s}}}}$
$11l = 2\;{\text{km}} + l$
$\Rightarrow$$10l = 2\;{\text{km}}$
$l = 0.2\;{\text{km}}$
Substitute $0.2\;{\text{km}}$ for l and 10 s for t in the equation (1) to find the speed of the engine.
$\Rightarrow$${v_1} = \dfrac{{0.2\;{\text{km}}}}{{10\;{\text{s}}}}$
${v_1} = \dfrac{{0.2\;{\text{km}}}}{{\left( {10\;{\text{s}} \times \dfrac{{1\;{\text{h}}}}{{3600\;{\text{s}}}}} \right)}}$
$\Rightarrow$${v_1} = 72\;{\text{km}}/{\text{h}}$
Thus, the speed of the engine is $72\;{\text{km}}/{\text{h}}$ and the option (c) is the correct answer.
Note:
The above problem can also be solved by the concept of the relative motion. The resultant speed becomes equal to the sum of the speed of both objects if both objects move in opposite directions and become equal to subtraction of speed of both objects.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line