A uniform heavy rod of length L and area of cross section A is hanging from a fixed support. If young’s modulus of the rod is is Y, then the increase in the length of the rod is ( $\rho $ is a density of the material of the rod)
(A) $\dfrac{{{L^2}Y}}{{2\rho g}}$
(B) $\dfrac{{{L^2}\rho g}}{{2Y}}$
(C) $\dfrac{{{L^2}g}}{{2\rho Y}}$
(D) $\dfrac{{{L^2}g}}{{3Y\rho }}$
Answer
Verified
122.7k+ views
Hint: We will calculate strain using $Strain = \dfrac{{Change\,\,\,\,in\,\,length}}{{Original\,\,length}}$ formula and stress using $Stress = \dfrac{{Force}}{{Area}}$ formula. Then using Young's modulus formula which is stress to strain ratio we will calculate elongation in length of the rod.
Complete step by step answer:
Let us assume the length of rod is L, area of cross section is A and young’s modulus is Y.
Young’s modulus:
It is defined as a tendency of a material to withstand changes made in length when it undergoes compression or expansion.
Change in length of rod $ = \Delta L$
Force is acting on the rod in terms of its weight. Elongation takes place when force acts on rod.
$Y = \dfrac{{Stress}}{{Strain}}$ … (1)
Stress is defined as force per unit area.
$Stress = \dfrac{{Force}}{{Area}}$
A body of mass ‘m’ is accelerated by ‘a’, object is said to exert a force ‘F’;
$Force = mass\, \times acceleration$
$ \Rightarrow F = mg$ … (2)
Strain is defined as the ratio of change in length to its original length.
$Strain = \dfrac{{Change\,\,\,\,in\,\,length}}{{Original\,\,length/2}} = \dfrac{{\Delta L}}{{L/2}}$ … (3)
Centre of gravity:
Whole weight of an object is concentrated at the centre.
$Y = \dfrac{{mgL}}{{2A\Delta L}}$
$\Delta L = \dfrac{{mgL}}{{2AY}}$ … (4)
$Density = \dfrac{{Mass}}{{Volume}}$
Volume of rod =$length \times area$
$\rho = \dfrac{m}{V} = \dfrac{m}{{LA}}$ … (5)
Using equation (4),
$\Delta L = \dfrac{{mgL}}{{2AY}} \times \dfrac{L}{L}$
Using equation (5),
$\Delta L = \dfrac{{mgL}}{{LA \times 2Y}}$
$ \Rightarrow \Delta L = \dfrac{{\rho \,g\,{L^2}}}{{2Y}}$
Thus, the length of the rod is increased by $\dfrac{{{L^2}\rho g}}{{2Y}}$ .
Therefore, option B is correct.
Note: We can solve this question by using Dimensional Analysis in comparing options as well.
The acceleration due to gravity, ‘g’ cannot be taken in the denominator as in Young's modulus formula, stress is taken in the numerator. So, option A is not possible.
Secondly, the center of mass lies at mid-point of the rod instead of one third part of it. So, option D is wrong.
As per formula $\rho $ lies in the numerator. Option B is satisfying this condition. Therefore, it is the correct option.
Complete step by step answer:
Let us assume the length of rod is L, area of cross section is A and young’s modulus is Y.
Young’s modulus:
It is defined as a tendency of a material to withstand changes made in length when it undergoes compression or expansion.
Change in length of rod $ = \Delta L$
Force is acting on the rod in terms of its weight. Elongation takes place when force acts on rod.
$Y = \dfrac{{Stress}}{{Strain}}$ … (1)
Stress is defined as force per unit area.
$Stress = \dfrac{{Force}}{{Area}}$
A body of mass ‘m’ is accelerated by ‘a’, object is said to exert a force ‘F’;
$Force = mass\, \times acceleration$
$ \Rightarrow F = mg$ … (2)
Strain is defined as the ratio of change in length to its original length.
$Strain = \dfrac{{Change\,\,\,\,in\,\,length}}{{Original\,\,length/2}} = \dfrac{{\Delta L}}{{L/2}}$ … (3)
Centre of gravity:
Whole weight of an object is concentrated at the centre.
$Y = \dfrac{{mgL}}{{2A\Delta L}}$
$\Delta L = \dfrac{{mgL}}{{2AY}}$ … (4)
$Density = \dfrac{{Mass}}{{Volume}}$
Volume of rod =$length \times area$
$\rho = \dfrac{m}{V} = \dfrac{m}{{LA}}$ … (5)
Using equation (4),
$\Delta L = \dfrac{{mgL}}{{2AY}} \times \dfrac{L}{L}$
Using equation (5),
$\Delta L = \dfrac{{mgL}}{{LA \times 2Y}}$
$ \Rightarrow \Delta L = \dfrac{{\rho \,g\,{L^2}}}{{2Y}}$
Thus, the length of the rod is increased by $\dfrac{{{L^2}\rho g}}{{2Y}}$ .
Therefore, option B is correct.
Note: We can solve this question by using Dimensional Analysis in comparing options as well.
The acceleration due to gravity, ‘g’ cannot be taken in the denominator as in Young's modulus formula, stress is taken in the numerator. So, option A is not possible.
Secondly, the center of mass lies at mid-point of the rod instead of one third part of it. So, option D is wrong.
As per formula $\rho $ lies in the numerator. Option B is satisfying this condition. Therefore, it is the correct option.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line