When an $\alpha $ particle of mass $m$ moving with velocity $v$ bombarded on a heavy nucleus of charge $Ze$, its distance of closest approach from the nucleus depends in $m$ as:
(A) $\dfrac{1}{m}$
(B) $\dfrac{1}{{\sqrt m }}$
(C) $\dfrac{1}{{{m^2}}}$
(D) $m$
Answer
Verified
122.4k+ views
Hint the energy can neither be created nor destroyed, the energy can be transferred from one form of the energy to the other form of the energy. This can be given by the law of conservation of energy. Here, the kinetic energy is converted to the potential energy.
Useful formula:
The kinetic energy can be given by,
$KE = \dfrac{1}{2}m{v^2}$
Where, $KE$ is the kinetic energy of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle.
The potential energy can be given by,
$PE = k\dfrac{{Qq}}{d}$
Where, $PE$ is the potential energy of the particle, $k$ is the constant, $Q$ is the charge of the one particle, $q$ is the charge of the other particle and $d$ is the distance between the two charges.
Complete step by step answer
Given that,
The mass of the particle is given as, $m$,
The velocity of the particle is given as, $v$,
Now,
The kinetic energy of the particle can be given by,
$KE = \dfrac{1}{2}m{v^2}\,.....................\left( 1 \right)$
Now,
The potential energy of the particle can be given by,
$PE = k\dfrac{{Qq}}{d}\,...................\left( 2 \right)$
By the law of the conversation of the energy, then the equation (1) is equated with the equation (2), then
$\dfrac{1}{2}m{v^2} = k\dfrac{{Qq}}{d}$
In the question, the relation between the distance and the mass is asked, so assume the remaining terms as the constant, then
$m = \dfrac{1}{d}$
By rearranging the terms in the above equation, then the above equation is written as,
$d = \dfrac{1}{m}$
Hence, the option (A) is the correct answer.
Note The kinetic energy of the particle is directly proportional to the mass of the particle and the square of the velocity of the particle. As the mass of the particle and the square of the velocity of the particle increases then the kinetic energy of the particle also increases.
Useful formula:
The kinetic energy can be given by,
$KE = \dfrac{1}{2}m{v^2}$
Where, $KE$ is the kinetic energy of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle.
The potential energy can be given by,
$PE = k\dfrac{{Qq}}{d}$
Where, $PE$ is the potential energy of the particle, $k$ is the constant, $Q$ is the charge of the one particle, $q$ is the charge of the other particle and $d$ is the distance between the two charges.
Complete step by step answer
Given that,
The mass of the particle is given as, $m$,
The velocity of the particle is given as, $v$,
Now,
The kinetic energy of the particle can be given by,
$KE = \dfrac{1}{2}m{v^2}\,.....................\left( 1 \right)$
Now,
The potential energy of the particle can be given by,
$PE = k\dfrac{{Qq}}{d}\,...................\left( 2 \right)$
By the law of the conversation of the energy, then the equation (1) is equated with the equation (2), then
$\dfrac{1}{2}m{v^2} = k\dfrac{{Qq}}{d}$
In the question, the relation between the distance and the mass is asked, so assume the remaining terms as the constant, then
$m = \dfrac{1}{d}$
By rearranging the terms in the above equation, then the above equation is written as,
$d = \dfrac{1}{m}$
Hence, the option (A) is the correct answer.
Note The kinetic energy of the particle is directly proportional to the mass of the particle and the square of the velocity of the particle. As the mass of the particle and the square of the velocity of the particle increases then the kinetic energy of the particle also increases.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main