
When an $\alpha $ particle of mass $m$ moving with velocity $v$ bombarded on a heavy nucleus of charge $Ze$, its distance of closest approach from the nucleus depends in $m$ as:
(A) $\dfrac{1}{m}$
(B) $\dfrac{1}{{\sqrt m }}$
(C) $\dfrac{1}{{{m^2}}}$
(D) $m$
Answer
135.3k+ views
Hint the energy can neither be created nor destroyed, the energy can be transferred from one form of the energy to the other form of the energy. This can be given by the law of conservation of energy. Here, the kinetic energy is converted to the potential energy.
Useful formula:
The kinetic energy can be given by,
$KE = \dfrac{1}{2}m{v^2}$
Where, $KE$ is the kinetic energy of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle.
The potential energy can be given by,
$PE = k\dfrac{{Qq}}{d}$
Where, $PE$ is the potential energy of the particle, $k$ is the constant, $Q$ is the charge of the one particle, $q$ is the charge of the other particle and $d$ is the distance between the two charges.
Complete step by step answer
Given that,
The mass of the particle is given as, $m$,
The velocity of the particle is given as, $v$,
Now,
The kinetic energy of the particle can be given by,
$KE = \dfrac{1}{2}m{v^2}\,.....................\left( 1 \right)$
Now,
The potential energy of the particle can be given by,
$PE = k\dfrac{{Qq}}{d}\,...................\left( 2 \right)$
By the law of the conversation of the energy, then the equation (1) is equated with the equation (2), then
$\dfrac{1}{2}m{v^2} = k\dfrac{{Qq}}{d}$
In the question, the relation between the distance and the mass is asked, so assume the remaining terms as the constant, then
$m = \dfrac{1}{d}$
By rearranging the terms in the above equation, then the above equation is written as,
$d = \dfrac{1}{m}$
Hence, the option (A) is the correct answer.
Note The kinetic energy of the particle is directly proportional to the mass of the particle and the square of the velocity of the particle. As the mass of the particle and the square of the velocity of the particle increases then the kinetic energy of the particle also increases.
Useful formula:
The kinetic energy can be given by,
$KE = \dfrac{1}{2}m{v^2}$
Where, $KE$ is the kinetic energy of the particle, $m$ is the mass of the particle and $v$ is the velocity of the particle.
The potential energy can be given by,
$PE = k\dfrac{{Qq}}{d}$
Where, $PE$ is the potential energy of the particle, $k$ is the constant, $Q$ is the charge of the one particle, $q$ is the charge of the other particle and $d$ is the distance between the two charges.
Complete step by step answer
Given that,
The mass of the particle is given as, $m$,
The velocity of the particle is given as, $v$,
Now,
The kinetic energy of the particle can be given by,
$KE = \dfrac{1}{2}m{v^2}\,.....................\left( 1 \right)$
Now,
The potential energy of the particle can be given by,
$PE = k\dfrac{{Qq}}{d}\,...................\left( 2 \right)$
By the law of the conversation of the energy, then the equation (1) is equated with the equation (2), then
$\dfrac{1}{2}m{v^2} = k\dfrac{{Qq}}{d}$
In the question, the relation between the distance and the mass is asked, so assume the remaining terms as the constant, then
$m = \dfrac{1}{d}$
By rearranging the terms in the above equation, then the above equation is written as,
$d = \dfrac{1}{m}$
Hence, the option (A) is the correct answer.
Note The kinetic energy of the particle is directly proportional to the mass of the particle and the square of the velocity of the particle. As the mass of the particle and the square of the velocity of the particle increases then the kinetic energy of the particle also increases.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Displacement-Time Graph and Velocity-Time Graph for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage

JEE Main Chemistry Question Paper with Answer Keys and Solutions
