Answer
Verified
99.9k+ views
Hint: A bulb glows brighter when the power supplied to it is increased. The impedance of a circuit is defined as the overall opposition of the circuit to the current flow. It is a combined effect of resistance and capacitance.
Formula used
$Z = \sqrt {{R^2} + {X_C}^2} $
$P = {V_{rms}}{I_{rms}}\cos \phi $
Here, Z is the impedance of the circuit.
R is the resistance of the circuit.
${X_C}$ is the capacitive reactance in the circuit.
P is the power supplied to the bulb.
${V_{rms}}$ is the root mean square voltage.
${I_{rms}}$ is the root mean square current.
And $\phi $ is the phase angle.
Complete step by step solution:
In the given circuit, the total resistance R and the total capacitive reactance ${X_C}$ constitute the impedance of the circuit.
It is given by-
$I = \sqrt {{R^2} + {X_C}^2} $
The capacitive reactance is given by-
${X_C} = \dfrac{1}{{{\omega _C}}}$
Keeping this value in the formula,
$Z = \sqrt {{R^2} + {{\left( {\dfrac{1}{{{\omega _C}}}} \right)}^2}} $
$Z \propto \dfrac{1}{{{\omega _C}}}$
If the value of $\omega $ is increased, the impedance in the circuit decreases, thus option (C) and (D) are incorrect.
The brightness of a bulb is determined by the magnitude of power supplied to it,
It is given by-
$P = {V_{rms}}{I_{rms}}\cos \phi $
The cosine of phase angle can be given by-
$\cos \phi = \dfrac{R}{Z}$
The formula for power can be rewritten by substituting this value as,
$P = {V_{rms}}{I_{rms}}\dfrac{R}{Z}$
It is given that the Voltage remains constant in the circuit, R of a circuit is a constant value and thus the current supplied to it is also constant.
The only value that changes with the change in $\omega $ is the impedance of the circuit.
$P \propto \dfrac{1}{Z}$
Impedance decreases with the increase in $\omega $.
Thus, the power supplied to the bulb increases and the bulb glows brighter.
Therefore, option (B) is correct.
Note: The impedance of the circuit has two components, real and imaginary. The resistance of the circuit constitutes the real part of the impedance, while the imaginary part contains the reactance values of the inductive and capacitive behaviour of the circuit.
Formula used
$Z = \sqrt {{R^2} + {X_C}^2} $
$P = {V_{rms}}{I_{rms}}\cos \phi $
Here, Z is the impedance of the circuit.
R is the resistance of the circuit.
${X_C}$ is the capacitive reactance in the circuit.
P is the power supplied to the bulb.
${V_{rms}}$ is the root mean square voltage.
${I_{rms}}$ is the root mean square current.
And $\phi $ is the phase angle.
Complete step by step solution:
In the given circuit, the total resistance R and the total capacitive reactance ${X_C}$ constitute the impedance of the circuit.
It is given by-
$I = \sqrt {{R^2} + {X_C}^2} $
The capacitive reactance is given by-
${X_C} = \dfrac{1}{{{\omega _C}}}$
Keeping this value in the formula,
$Z = \sqrt {{R^2} + {{\left( {\dfrac{1}{{{\omega _C}}}} \right)}^2}} $
$Z \propto \dfrac{1}{{{\omega _C}}}$
If the value of $\omega $ is increased, the impedance in the circuit decreases, thus option (C) and (D) are incorrect.
The brightness of a bulb is determined by the magnitude of power supplied to it,
It is given by-
$P = {V_{rms}}{I_{rms}}\cos \phi $
The cosine of phase angle can be given by-
$\cos \phi = \dfrac{R}{Z}$
The formula for power can be rewritten by substituting this value as,
$P = {V_{rms}}{I_{rms}}\dfrac{R}{Z}$
It is given that the Voltage remains constant in the circuit, R of a circuit is a constant value and thus the current supplied to it is also constant.
The only value that changes with the change in $\omega $ is the impedance of the circuit.
$P \propto \dfrac{1}{Z}$
Impedance decreases with the increase in $\omega $.
Thus, the power supplied to the bulb increases and the bulb glows brighter.
Therefore, option (B) is correct.
Note: The impedance of the circuit has two components, real and imaginary. The resistance of the circuit constitutes the real part of the impedance, while the imaginary part contains the reactance values of the inductive and capacitive behaviour of the circuit.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main