Answer
Verified
110.7k+ views
Hint: In this problem, the alloy’s weight in air and weight in water are given, and the density of the gold and copper also given. By finding the amount of alloy in air and the amount of alloy in water, after finding the amount of alloy in air and water, and by equating the amount of alloy in air and amount of alloy in water, then the amount of gold can be determined.
Useful formula:
Amount of alloy in air is the sum of amount of gold and amount of copper,
${V_1}{\rho _1}g + {V_2}{\rho _2}g$
Where, ${V_1}$ is the volume of the gold, ${\rho _1}$ is the density of the gold, ${V_2}$ is the volume of the copper, ${\rho _2}$ is the density of the copper and $g$ is the acceleration due to gravity.
Amount of alloy in water,
${V_1}\left( {{\rho _1} - \rho } \right)g + {V_2}\left( {{\rho _2} - \rho } \right)g$
Here, the density of water is subtracted with the density of gold and density of copper.
Complete step by step solution:
Given that,
An alloy of gold and copper weighs $0.2\,kg$ in air,
An alloy of gold and copper weighs $0.188\,kg$ in water.
The density of gold, ${\rho _1} = 19.3 \times {10^3}\,kg{m^{ - 3}}$,
The density copper, ${\rho _2} = 8.93 \times {10^3}\,kg{m^{ - 3}}$.
Now,
The amount of alloy in air,
${V_1}{\rho _1}g + {V_2}{\rho _2}g = 0.2\,...................\left( 1 \right)$
On substituting the density values and the acceleration due to gravity in the equation (1), then
${V_1}\left( {19.3 \times {{10}^3} \times 9.81} \right) + {V_2}\left( {8.93 \times {{10}^3} \times 9.81} \right) = 0.2$
By multiplying the terms, then
$189333{V_1} + 87603.3{V_2} = 0.2\,................\left( 2 \right)$
The amount of alloy in water,
${V_1}\left( {{\rho _1} - \rho } \right)g + {V_2}\left( {{\rho _2} - \rho } \right)g = 0.188\,.................\left( 3 \right)$
On substituting the density values and the acceleration due to gravity in the equation (1), then ${V_1}\left( {19.3 \times {{10}^3} - 1000} \right)9.81 + {V_2}\left( {8.93 \times {{10}^3} - 1000} \right)9.81 = 0.188$
By solving the above equation, then
$179523{V_1} + 77793.3{V_2} = 0.188\,................\left( 4 \right)$
On subtracting the equation (2) and equation (4), then the value of ${V_1}$ and ${V_2}$ are,
${V_1} = 9 \times {10^{ - 7}}\,{m^3}$ and ${V_2} = 3 \times {10^{ - 7}}\,{m^3}$
The amount of gold is,
$ \Rightarrow {V_1} \times {\rho _1}$
On substituting the volume and density valuer in the above equation, then
$ \Rightarrow 9 \times {10^{ - 7}} \times 19.3 \times {10^3}$
On multiplying,
The amount of gold is $0.017\,kg$ is also equal to $17 \times {10^{ - 3}}\,kg$
Hence, the option (B) is correct.
Note: In equation (3), the density of the gold and the density of the copper is subtracted by the density of water because the alloy is in water. Then by subtracting the equation (2) and the equation (4), the volume of the gold and copper is determined and the volume is multiplied with the density, the weight of the gold is determined.
Useful formula:
Amount of alloy in air is the sum of amount of gold and amount of copper,
${V_1}{\rho _1}g + {V_2}{\rho _2}g$
Where, ${V_1}$ is the volume of the gold, ${\rho _1}$ is the density of the gold, ${V_2}$ is the volume of the copper, ${\rho _2}$ is the density of the copper and $g$ is the acceleration due to gravity.
Amount of alloy in water,
${V_1}\left( {{\rho _1} - \rho } \right)g + {V_2}\left( {{\rho _2} - \rho } \right)g$
Here, the density of water is subtracted with the density of gold and density of copper.
Complete step by step solution:
Given that,
An alloy of gold and copper weighs $0.2\,kg$ in air,
An alloy of gold and copper weighs $0.188\,kg$ in water.
The density of gold, ${\rho _1} = 19.3 \times {10^3}\,kg{m^{ - 3}}$,
The density copper, ${\rho _2} = 8.93 \times {10^3}\,kg{m^{ - 3}}$.
Now,
The amount of alloy in air,
${V_1}{\rho _1}g + {V_2}{\rho _2}g = 0.2\,...................\left( 1 \right)$
On substituting the density values and the acceleration due to gravity in the equation (1), then
${V_1}\left( {19.3 \times {{10}^3} \times 9.81} \right) + {V_2}\left( {8.93 \times {{10}^3} \times 9.81} \right) = 0.2$
By multiplying the terms, then
$189333{V_1} + 87603.3{V_2} = 0.2\,................\left( 2 \right)$
The amount of alloy in water,
${V_1}\left( {{\rho _1} - \rho } \right)g + {V_2}\left( {{\rho _2} - \rho } \right)g = 0.188\,.................\left( 3 \right)$
On substituting the density values and the acceleration due to gravity in the equation (1), then ${V_1}\left( {19.3 \times {{10}^3} - 1000} \right)9.81 + {V_2}\left( {8.93 \times {{10}^3} - 1000} \right)9.81 = 0.188$
By solving the above equation, then
$179523{V_1} + 77793.3{V_2} = 0.188\,................\left( 4 \right)$
On subtracting the equation (2) and equation (4), then the value of ${V_1}$ and ${V_2}$ are,
${V_1} = 9 \times {10^{ - 7}}\,{m^3}$ and ${V_2} = 3 \times {10^{ - 7}}\,{m^3}$
The amount of gold is,
$ \Rightarrow {V_1} \times {\rho _1}$
On substituting the volume and density valuer in the above equation, then
$ \Rightarrow 9 \times {10^{ - 7}} \times 19.3 \times {10^3}$
On multiplying,
The amount of gold is $0.017\,kg$ is also equal to $17 \times {10^{ - 3}}\,kg$
Hence, the option (B) is correct.
Note: In equation (3), the density of the gold and the density of the copper is subtracted by the density of water because the alloy is in water. Then by subtracting the equation (2) and the equation (4), the volume of the gold and copper is determined and the volume is multiplied with the density, the weight of the gold is determined.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main